RxJava2.0中just操作符用法和源码分析(二)

just基本使用

just是用来创建一个Observable来发射指定值,可以将任何对象转化为一个用来被发射的ObservableSource数据。这个方法与fromArray相似,除了from会将数组或者Iterable中的元素逐个取出然后在逐个依次发射,而just会直接将数组或者Iterable对象作为单个数据来发射。

实例代码:

Integer[] items = { 0, 1, 2, 3, 4, 5 };
Observable.just(items).subscribe(new Consumer() {
    @Override
    public void accept(Integer[] integers) throws Exception {
        for (int i : integers) {
            println("accept : onNext : " + i + "\n");
        }
    }
});

just接收一个用于发射的数据,我们查看源码发现just有许多重载的方法:

just(T item)

just(T item1, T item2)

just(T item1, T item2, T item3)

just(T item1, T item2, T item3, T item4)

just(T item1, T item2, T item3, T item4, T item5)

just(T item1, T item2, T item3, T item4, T item5, T item6)

just(T item1, T item2, T item3, T item4, T item5, T item6, T item7)

just(T item1, T item2, T item3, T item4, T item5, T item6, T item7, T item8)

just(T item1, T item2, T item3, T item4, T item5, T item6, T item7, T item8, T item9)

just(T item1, T item2, T item3, T item4, T item5, T item6, T item7, T item8, T item9, T item10)

上面不同的重载方法分别用来接收不同数量的item,然后分别发射这些item。我们在看just方法中的实现:

@CheckReturnValue
@SchedulerSupport(SchedulerSupport.NONE)
public static  Observable just(T item) {
    ObjectHelper.requireNonNull(item, "The item is null");
    return RxJavaPlugins.onAssembly(new ObservableJust(item));
}

public static  Observable just(T item1, T item2) {
    ObjectHelper.requireNonNull(item1, "The first item is null");
    ObjectHelper.requireNonNull(item2, "The second item is null");

    return fromArray(item1, item2);
}

public static  Observable fromArray(T... items) {
    ObjectHelper.requireNonNull(items, "items is null");
    if (items.length == 0) {
        return empty();
    } else
    if (items.length == 1) {
        return just(items[0]);
    }
    return RxJavaPlugins.onAssembly(new ObservableFromArray(items));
}

当just中接收的是一个item时,直接调用RxJavaPlugins.onAssembly(new ObservableJust(item)),如果是多个item,那么会先去判断item的合法性,然后再去调用RxJavaPlugins.onAssembly(new ObservableFromArray(items)).我们来逐个分析,先看单个item的调用:

Observable#just(T item)

@CheckReturnValue
@SchedulerSupport(SchedulerSupport.NONE)
public static  Observable just(T item) {
    ObjectHelper.requireNonNull(item, "The item is null");
    return RxJavaPlugins.onAssembly(new ObservableJust(item));
}

首先通过参数item,生成一个ObservableJust的对象,该类比较简单如下:

ObservableJust

/**
 * Represents a constant scalar value.
 * @param  the value type
 */
public final class ObservableJust<T> extends Observable<T> implements ScalarCallable<T> {

    private final T value;
    public ObservableJust(final T value) {
        this.value = value;
    }

    @Override
    protected void subscribeActual(Observersuper T> s) {
        ScalarDisposable sd = new ScalarDisposable(s, value);
        s.onSubscribe(sd);
        sd.run();
    }

    @Override
    public T call() {
        return value;
    }
}

将上面生成的ObservableJust类对象,作为onAssembly方法参数,进行装配:

RxJavaPlugins#onAssembly

@SuppressWarnings({ "rawtypes", "unchecked" })
@NonNull
public static  Observable onAssembly(@NonNull Observable source) {
    Functionsuper Observable, ? extends Observable> f = onObservableAssembly;
    if (f != null) {
        return apply(f, source);
    }
    return source;
}

到这里,我们知道会返回该Observable对象,而这个对象具体实现类就是ObservableJust对象。
完成了Observable初始化后,我们开始订阅以个观察者对象。在这里我选择了Consumer对象。我们来看看这个类:

public interface Consumer {
    /**
     * Consume the given value.
     * @param t the value
     * @throws Exception on error
     */
    void accept(@NonNull T t) throws Exception;
}

这个类十分简单,是标准的函数式接口,里面只有以个accept方法。现在我们重点来看看Observable中的subscribe方法。这里面同样对该方法进行了重载:

@CheckReturnValue
@SchedulerSupport(SchedulerSupport.NONE)
public final Disposable subscribe(Consumersuper T> onNext) {
    return subscribe(onNext, Functions.ON_ERROR_MISSING, Functions.EMPTY_ACTION, Functions.emptyConsumer());
}

@CheckReturnValue
@SchedulerSupport(SchedulerSupport.NONE)
public final Disposable subscribe(Consumersuper T> onNext, Consumersuper Throwable> onError) {
    return subscribe(onNext, onError, Functions.EMPTY_ACTION, Functions.emptyConsumer());
}

@CheckReturnValue
@SchedulerSupport(SchedulerSupport.NONE)
public final Disposable subscribe(Consumersuper T> onNext, Consumersuper Throwable> onError,
        Action onComplete) {
    return subscribe(onNext, onError, onComplete, Functions.emptyConsumer());
}

@CheckReturnValue
@SchedulerSupport(SchedulerSupport.NONE)
public final Disposable subscribe(Consumersuper T> onNext, Consumersuper Throwable> onError,
        Action onComplete, Consumersuper Disposable> onSubscribe) {
    ObjectHelper.requireNonNull(onNext, "onNext is null");
    ObjectHelper.requireNonNull(onError, "onError is null");
    ObjectHelper.requireNonNull(onComplete, "onComplete is null");
    ObjectHelper.requireNonNull(onSubscribe, "onSubscribe is null");

    LambdaObserver ls = new LambdaObserver(onNext, onError, onComplete, onSubscribe);

    subscribe(ls);

    return ls;
}

当你使用Consumer作为参数时,最多可以接收4个参数:
Consumer

@SchedulerSupport(SchedulerSupport.NONE)
@Override
public final void subscribe(Observersuper T> observer) {
    ObjectHelper.requireNonNull(observer, "observer is null");
    try {
        observer = RxJavaPlugins.onSubscribe(this, observer);

        ObjectHelper.requireNonNull(observer, "Plugin returned null Observer");

        subscribeActual(observer);
    } catch (NullPointerException e) { // NOPMD
        throw e;
    } catch (Throwable e) {
        Exceptions.throwIfFatal(e);
        // can't call onError because no way to know if a Disposable has been set or not
        // can't call onSubscribe because the call might have set a Subscription already
        RxJavaPlugins.onError(e);

        NullPointerException npe = new NullPointerException("Actually not, but can't throw other exceptions due to RS");
        npe.initCause(e);
        throw npe;
    }
}

这里主要是执行了subscribeActual方法,而这个方法在Observable中是个抽象的方法,前面我们已经知道Observable的具体实现类是ObservableJust类,所以具体执行的也是这个类中的方法:

ObservableJust#subscribeActual

@Override
protected void subscribeActual(Observersuper T> s) {
    ScalarDisposable sd = new ScalarDisposable(s, value);
    s.onSubscribe(sd);
    sd.run();
}

方法里面首先创建了一个ScalarDisposable对象,然后将它作为参数执行传入的Observer的onSubscribe方法。
而我们又知道Observer对象就是刚才创建的LambdaObserver对象。

LambdaObserver#onSubscribe

public final class LambdaObserver<T> extends AtomicReference<Disposable> implements Observer<T>, Disposable {

    ......

    public LambdaObserver(Consumersuper T> onNext, Consumersuper Throwable> onError,
            Action onComplete,
            Consumersuper Disposable> onSubscribe) {
        super();
        this.onNext = onNext;
        this.onError = onError;
        this.onComplete = onComplete;
        this.onSubscribe = onSubscribe;
    }

    @Override
    public void onSubscribe(Disposable s) {
        if (DisposableHelper.setOnce(this, s)) {
            try {
                onSubscribe.accept(this);
            } catch (Throwable ex) {
                Exceptions.throwIfFatal(ex);
                s.dispose();
                onError(ex);
            }
        }
    }

    ......
}

从这里可以知道onSubscribe方法中,其实是调用的onSubscribe实例中的accept方法。而这个onSubscribe又是在LambdaObserver实例化时,传入的第四个参数。这里将ObservableJust中subscribeActual方法里面的创建的ScalarDisposable对象,通过该方法回调传出来,用来观察ObservableJust的状态是否被断开。
接下来将会执行ScalarDisposable中的run方法:

public static final class ScalarDisposable<T> extends AtomicInteger implements QueueDisposable<T>, Runnable {

    private static final long serialVersionUID = 3880992722410194083L;

    final Observersuper T> observer;

    final T value;

    static final int START = 0;
    static final int FUSED = 1;
    static final int ON_NEXT = 2;
    static final int ON_COMPLETE = 3;

    public ScalarDisposable(Observersuper T> observer, T value) {
        this.observer = observer;
        this.value = value;
    }

    .....

    @Override
    public void run() {
        if (get() == START && compareAndSet(START, ON_NEXT)) {
            observer.onNext(value);
            if (get() == ON_NEXT) {
                lazySet(ON_COMPLETE);
                observer.onComplete();
            }
        }
    }
}

上面的分析我们知道这个observer其实就是LambdaObserver的实例化对象。通过它来执行LambdaObserver中的onNext方法,当完成发送时再去执行observer.onComplete()

LambdaObserver#onNext

@Override
public void onNext(T t) {
    if (!isDisposed()) {
        try {
            onNext.accept(t);
        } catch (Throwable e) {
            Exceptions.throwIfFatal(e);
            get().dispose();
            onError(e);
        }
    }
}

@Override
public void onError(Throwable t) {
    if (!isDisposed()) {
        lazySet(DisposableHelper.DISPOSED);
        try {
            onError.accept(t);
        } catch (Throwable e) {
            Exceptions.throwIfFatal(e);
            RxJavaPlugins.onError(new CompositeException(t, e));
        }
    }
}

@Override
public void onComplete() {
    if (!isDisposed()) {
        lazySet(DisposableHelper.DISPOSED);
        try {
            onComplete.run();
        } catch (Throwable e) {
            Exceptions.throwIfFatal(e);
            RxJavaPlugins.onError(e);
        }
    }
}

而这里的onNext对象就是传入的第一个参数Consumer对象。于是第一个参数的Consumer的回调参数得到了执行。如果出现异常则会调用onError方法,该方法里面通过onError(第二个参数)的回调方法accept将错误信息传递出来。当执行完毕后就会调用onComplete方法,然后通过onComplete(第三个参数Action)回调run方法。到这里就完成了对just操作符的分析。

下面列出just的简单demo:

Observable.just(1,2,3).subscribe(new Consumer() {
    @Override
    public void accept(Integer integer) throws Exception {
        println("accept : onNext : " + integer + "\n");
    }
}, new Consumer() {
    @Override
    public void accept(Throwable throwable) throws Exception {
        println("accept : throwable : " + throwable.getMessage() + "\n");
    }
}, new Action() {
    @Override
    public void run() throws Exception {
        println("accept : run" + "\n");
    }
}, new Consumer() {
    @Override
    public void accept(Disposable disposable) throws Exception {
        println("accept : disposable : " + disposable.isDisposed() + "\n");
    }
});


执行结果:

accept : disposable : false

accept : onNext : 1

accept : onNext : 2

accept : onNext : 3

accept : run

你可能感兴趣的:(RxJava)