- Sqoop安装部署
愿与狸花过一生
大数据sqoophadoophive
ApacheSqoop简介Sqoop(SQL-to-Hadoop)是Apache开源项目,主要用于:将关系型数据库中的数据导入Hadoop分布式文件系统(HDFS)或相关组件(如Hive、HBase)。将Hadoop处理后的数据导出回关系型数据库。核心特性批量数据传输支持从数据库表到HDFS/Hive的全量或增量数据迁移。并行化处理基于MapReduce实现并行导入导出,提升大数据量场景的效率。自
- 数据中台(二)数据中台相关技术栈
Yuan_CSDF
#数据中台
1.平台搭建1.1.Amabari+HDP1.2.CM+CDH2.相关的技术栈数据存储:HDFS,HBase,Kudu等数据计算:MapReduce,Spark,Flink交互式查询:Impala,Presto在线实时分析:ClickHouse,Kylin,Doris,Druid,Kudu等资源调度:YARN,Mesos,Kubernetes任务调度:Oozie,Azakaban,AirFlow,
- Hadoop相关面试题
努力的搬砖人.
java面试hadoop
以下是150道Hadoop面试题及其详细回答,涵盖了Hadoop的基础知识、HDFS、MapReduce、YARN、HBase、Hive、Sqoop、Flume、ZooKeeper等多个方面,每道题目都尽量详细且简单易懂:Hadoop基础概念类1.什么是Hadoop?Hadoop是一个由Apache基金会开发的开源分布式计算框架,主要用于处理和存储大规模数据集。它提供了高容错性和高扩展性的分布式存
- 中电金信25/3/18面前笔试(需求分析岗+数据开发岗)
苍曦
需求分析前端javascript
部分相同题目在第二次数据开发岗中不做解析,本次解析来源于豆包AI,正确与否有待商榷,本文只提供一个速查与知识点的补充。一、需求分析第1题,单选题,Hadoop的核心组件包括HDFS和以下哪个?MapReduceSparkStormFlink解析:Hadoop的核心组件是HDFS(分布式文件系统)和MapReduce(分布式计算框架)。Spark、Storm、Flink虽然也是大数据处理相关技术,但
- Hadoop MapReduce 词频统计(WordCount)代码解析教程
我不是少爷.
Java基础hadoopmapreduce大数据
一、概述这是一个基于HadoopMapReduce框架实现的经典词频统计程序。程序会统计输入文本中每个单词出现的次数,并将结果输出到HDFS文件系统。二、代码结构packagecom.bigdata.wc;//Hadoop核心类库导入importorg.apache.hadoop.conf.Configuration;importorg.apache.hadoop.fs.Path;//数据类型定义
- 介绍 Apache Spark 的基本概念和在大数据分析中的应用
佛渡红尘
apache
ApacheSpark是一个开源的集群计算框架,最初由加州大学伯克利分校的AMPLab开发,用于大规模数据处理和分析。相比于传统的MapReduce框架,Spark具有更快的数据处理速度和更强大的计算能力。ApacheSpark的基本概念包括:弹性分布式数据集(RDD):是Spark中基本的数据抽象,是一个可并行操作的分区记录集合。RDD可以在集群中的节点间进行分布式计算。转换(Transform
- 基于MapReduce的气候数据分析
赵谨言
论文毕业设计经验分享
标题:基于MapReduce的气候数据分析内容:1.摘要本文聚焦于基于MapReduce的气候数据分析。背景在于随着全球气候变化问题日益严峻,海量气候数据的高效处理和分析成为关键。目的是利用MapReduce技术对气候数据进行有效挖掘,以揭示气候变化规律和趋势。方法上,采用MapReduce编程模型对大规模气候数据进行分布式处理,通过数据的映射和归约操作实现并行计算。结果表明,运用该技术能显著提高
- 场景题:100G的文件里有很多id,用1G内存的机器排序,怎么做?
海量数据排序思路核心方案:外排序(分治+多路归并)MapReduce外排序是指数据量太大,无法全部加载到内存中,需要将数据分成多个小块进行排序,然后将排序后的小块合并成一个大的有序块1.分块排序(Map阶段)分块策略按1G内存容量限制,将100G文件拆分为200个500MB分块(保留内存用于排序计算和系统开销)内存排序每个分块加载至内存后:①使用快速排序(时间复杂度O(nlogn))②去重优化:若
- 上万个Map运行时链接ApplicationMaster超时FAILED
500佰
大数据云计算bigdatamapreduce
#MapReduce业务常见故障#大数据#生产环境真实案例#MapReduce#批计算#离线业务#整理#经验总结说明:此篇总结MapReduce业务常见故障案例处理方案结合自身经历总结不易+关注+收藏欢迎留言更多专题(详见):MapReduce计算引擎详解--项目优化(指导书)上万个Map运行时链接ApplicationMaster超时FAILED症状Mapreduce任务会并发起几万个map,会
- hive 数字转换字符串_Hive架构及Hive SQL的执行流程解读
weixin_39756416
hive数字转换字符串
1、Hive产生背景MapReduce编程的不便性HDFS上的文件缺少Schema(表名,名称,ID等,为数据库对象的集合)2、Hive是什么Hive的使用场景是什么?基于Hadoop做一些数据清洗啊(ETL)、报表啊、数据分析可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能。Hive是SQL解析引擎,它将SQL语句转译成M/RJob然后在Hadoop执行。由Facebook开源,
- mySQL和Hive的区别
iijik55
面试学习路线阿里巴巴hivemysql大数据tomcat面试
SQL和HQL的区别整体1、存储位置:Hive在Hadoop上;Mysql将数据存储在设备或本地系统中;2、数据更新:Hive不支持数据的改写和添加,是在加载的时候就已经确定好了;数据库可以CRUD;3、索引:Hive无索引,每次扫描所有数据,底层是MR,并行计算,适用于大数据量;MySQL有索引,适合在线查询数据;4、执行:Hive底层是MapReduce;MySQL底层是执行引擎;5、可扩展性
- Hadoop、Spark和 Hive 的详细关系
夜行容忍
hadoopsparkhive
Hadoop、Spark和Hive的详细关系1.ApacheHadoopHadoop是一个开源框架,用于分布式存储和处理大规模数据集。核心组件:HDFS(HadoopDistributedFileSystem):分布式文件系统,提供高吞吐量的数据访问。YARN(YetAnotherResourceNegotiator):集群资源管理和作业调度系统。MapReduce:基于YARN的并行处理框架,用
- 大数据面试之路 (一) 数据倾斜
愿与狸花过一生
大数据面试职场和发展
记录大数据面试历程数据倾斜大数据岗位,数据倾斜面试必问的一个问题。一、数据倾斜的表现与原因表现某个或某几个Task执行时间过长,其他Task快速完成。Spark/MapReduce作业卡在某个阶段(如reduce阶段),日志显示少数Task处理大量数据。资源利用率不均衡(如CPU、内存集中在某些节点)。常见场景Key分布不均:如某些Key对应的数据量极大(如用户ID为空的记录、热点事件)。数据分区
- Hadoop的运行模式
对许
#Hadoophadoop大数据分布式
Hadoop的运行模式1、本地运行模式2、伪分布式运行模式3、完全分布式运行模式4、区别与总结Hadoop有三种可以运行的模式:本地运行模式、伪分布式运行模式和完全分布式运行模式1、本地运行模式本地运行模式无需任何守护进程,单机运行,所有的程序都运行在同一个JVM上执行Hadoop安装后默认为本地模式,数据存储在Linux本地。在本地模式下调试MapReduce程序非常高效方便,一般该模式主要是在
- Hadoop的mapreduce的执行过程
画纸仁
大数据hadoopmapreduce大数据
一、map阶段的执行过程第一阶段:把输入目录下文件按照一定的标准逐个进行逻辑切片,形成切片规划。默认Splitsize=Blocksize(128M),每一个切片由一个MapTask处理。(getSplits)第二阶段:对切片中的数据按照一定的规则读取解析返回对。默认是按行读取数据。key是每一行的起始位置偏移量,value是本行的文本内容。(TextInputFormat)第三阶段:调用Mapp
- Hadoop:分布式计算平台初探
dccrtbn6261333
大数据运维java
Hadoop是一个开发和运行处理大规模数据的软件平台,是Apache的一个用java语言实现开源软件框架,实现在大量计算机组成的集群中对海量数据进行分布式计算。Hadoop框架中最核心设计就是:MapReduce和HDFS。MapReduce提供了对数据的计算,HDFS提供了海量数据的存储。MapReduceMapReduce的思想是由Google的一篇论文所提及而被广为流传的,简单的一句话解释M
- 探秘开源项目 MapReduce:分布式计算的新篇章
褚知茉Jade
探秘开源项目MapReduce:分布式计算的新篇章去发现同类优质开源项目:https://gitcode.com/在大数据处理领域,一个名字始终熠熠生辉,那就是。这是一个由Google提出的并被广泛应用的编程模型,用于大规模数据集的并行计算。本文将带你深入了解这一开源实现的魅力,分析其技术原理,探讨它的应用场景,并揭示它独特的特性。项目简介该项目是ChubbyJiang对原始GoogleMapRe
- MapReduce:分布式并行编程的基石
JAZJD
mapreduce分布式大数据
目录概述分布式并行编程分布式并行编程模型分布式并行编程框架MapReduce模型简介Map和Reduce函数Map函数Map函数的输入和输出Map函数的常见操作Reduce函数Reduce函数的输入和输出Reduce函数的常见操作工作流程概述各个阶段1.输入分片2.Map阶段3.Shuffle阶段4.Reduce阶段MapReduce工作流程总结Shuffle过程详解1.分区(Partitioni
- MapReduce:分布式计算的基石
Earth explosion
mapreduce大数据
MapReduce是一种用于处理和生成大数据集的编程模型,以及一个用于执行该模型的关联实现。它使得在大型商用硬件集群(数千台机器)上进行并行处理海量数据成为可能。本文将深入探讨MapReduce的核心概念、工作原理、应用场景以及一些高级主题。核心概念:分而治之MapReduce的核心思想是“分而治之”。它将复杂的计算任务分解成两个主要阶段:Map阶段和Reduce阶段。Map阶段:输入数据被分割成
- 【Hadoop】如何理解MapReduce?
2302_79952574
hadoopmapreduce数据库
MapReduce是一种用于处理大规模数据集的编程模型和计算框架。它的核心思想是将复杂的计算任务分解为两个简单的阶段:Map(映射)和Reduce(归约)。通过这种方式,MapReduce可以高效地并行处理海量数据。一.MapReduce的核心概念1.Map(映射):将输入数据分割成小块,并对每个小块进行初步处理。输出键值对(key-valuepairs),例如。2.Shuffle和Sort(洗牌
- Hadoop介绍:什么是Hadoop?了解Hadoop的应用
Zzzxt007
hadoop大数据分布式
一、认识Hadoop框架Hadoop是一个提供分布式存储和计算的开源软件框架,使用Java语言编写,具有高扩展性、高容错性、无共享和高可用(HA)等特点,非常适合处理海量数据。它基于Google发布的MapReduce论文实现,并且应用了函数式编程的思想。Hadoop框架主要包括HDFS(HadoopDistributedFileSystem,Hadoop分布式文件系统)、MapReduce、YA
- 【Hadoop】详解HDFS
2302_79952574
hadoophdfs大数据
Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件上的分布式文件系统,它是一个高度容错性的系统,适合部署在廉价的机器上,能够提供高吞吐量的数据访问,非常适合大规模数据集上的应用。为了做到可靠性,HDFS创建了多份数据块的副本,并将它们放置在服务器群的计算节点中,MapReduce可以在它们所在的节点上处理这些数据。1.HDFS的设计目标存储大规模数据:HDFS可以存储并管理PB级甚至
- hadoop框架与核心组件刨析(四)MapReduce
小刘爱喇石( ˝ᗢ̈˝ )
hadoopmapreduce大数据
MapReduce是一种用于大规模数据处理的编程模型和计算框架,最初由Google提出,后来由ApacheHadoop实现并广泛应用。它的核心思想是将数据处理任务分解为两个阶段:Map和Reduce,并通过分布式计算并行处理海量数据。MapReduce的核心思想分而治之:将大规模数据集分割成多个小块,分布到集群中的多个节点上并行处理。Map阶段:将输入数据转换为键值对(Key-ValuePair)
- hadoop运行java程序命令_使用命令行编译打包运行自己的MapReduce程序 Hadoop2.6.0
emi0wb
网上的MapReduceWordCount教程对于如何编译WordCount.java几乎是一笔带过…而有写到的,大多又是0.20等旧版本版本的做法,即javac-classpath/usr/local/hadoop/hadoop-1.0.1/hadoop-core-1.0.1.jarWordCount.java,但较新的2.X版本中,已经没有hadoop-core*.jar这个文件,因此编辑和打
- 大数据Hadoop集群运行程序
赵广陆
hadoophadoopbigdatamapreduce
目录1运行自带的MapReduce程序2常见错误1运行自带的MapReduce程序下面我们在Hadoop集群上运行一个MapReduce程序,以帮助读者对分布式计算有个基本印象。在安装Hadoop时,系统给用户提供了一些MapReduce示例程序,其中有一个典型的用于计算圆周率的Java程序包,现在运行该程序。该jar包文件的位置和文件名是“~/hadoop-3.1.0/share/Hadoop/
- 大数据面试系列之——Hadoop
潜心_守道
大数据面经面试大数据Hadoop
Hadoop的三个核心:HDFS(分布式存储系统)MapReduce(分布式计算系统)YARN(分布式资源调度)1.Hadoop集群的几种搭建模式1.单机模式:直接解压安装,不存在分布式存储系统2.伪分布式:NameNode和DataNode安装于同一个节点,无法体现分布式处理的优势。3.完全分布式:一个主节点,多个从节点,存在如果主节点宕机,集群就无法使用的缺点。4.高可用模式:多个主节点,多个
- hadoop
百里自来卷
hadoop大数据分布式
Hadoop是一个用于分布式存储和处理大规模数据的开源框架,它的架构主要由以下几个核心组件组成:1.Hadoop生态系统核心组件Hadoop的核心架构主要包括HDFS(HadoopDistributedFileSystem)和YARN(YetAnotherResourceNegotiator),以及MapReduce计算框架:1.1HDFS(分布式文件系统)HDFS负责存储大规模数据,采用主从架构
- 第一个Hadoop程序
lqlj2233
hadoop大数据分布式
编写和运行第一个Hadoop程序是学习Hadoop的重要步骤。以下是一个经典的“WordCount”程序示例,它统计文本文件中每个单词出现的次数。我们将使用Java编写MapReduce程序,并在Hadoop集群上运行它。一、WordCount程序概述WordCount是Hadoop的“HelloWorld”程序。它的基本逻辑如下:Mapper:读取输入文件,将每一行文本拆分为单词,并输出每个单词
- 【自学笔记】Hadoop基础知识点总览-持续更新
Long_poem
笔记hadoop大数据
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录Hadoop基础知识点总览1.Hadoop简介2.Hadoop生态系统3.HDFS(HadoopDistributedFileSystem)HDFS基本命令4.MapReduceWordCount示例(Java)5.YARN(YetAnotherResourceNegotiator)6.其他组件简介总结Hadoop基础知识点总
- Spark是什么?可以用来做什么?
Bugkillers
大数据spark大数据分布式
ApacheSpark是一个开源的分布式计算框架,专为处理大规模数据而设计。它最初由加州大学伯克利分校开发,现已成为大数据处理领域的核心工具之一。相比传统的HadoopMapReduce,Spark在速度、易用性和功能多样性上具有显著优势。一、Spark的核心特点速度快:基于内存计算(In-MemoryProcessing),比基于磁盘的MapReduce快10~100倍。支持高效的DAG(有向无
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的