runtime简介
因为objective-c是一门动态语言,也就是说只有编译器是不够的,还需要一个运行时系统(runtime system)来执行编译后的代码。这是整个objective-c运行框架的一块基石。
runtime简称运行时。其中最主要的就是消息机制。对于编译期语言,会在编译的时候决定调用哪个函数。对于OC的函数,是动态调用的,在编译的时候并不能决定真正调用哪个函数,只有在运行时才会根据函数的名称找到对应的函数来调用。
runtime的作用
Objc 在三种层面上与 Runtime 系统进行交互:
1. 通过 Objective-C 源代码
2. 通过 Foundation 框架的 NSObject 类定义的方法
3. 通过对 Runtime 库函数的直接调用
runtime源码
苹果和GNU各自维护一个开源的runtime版本,这两个版本之间都在努力的保持一致。
都是运行时的头文件,其中主要使用的函数定义在message.h和runtime.h这两个文件中。
通过 Foundation 框架的 NSObject 类定义的方法
Cocoa 程序中绝大部分类都是 NSObject 类的子类,所以都继承了 NSObject 的行为。(NSProxy 类是个例外,它是个抽象超类)
-class
方法返回对象的类;-isKindOfClass:
和-isMemberOfClass:
方法检查对象是否存在于指定的类的继承体系中(是否是其子类或者父类或者当前类的成员变量);-respondsToSelector:
检查对象能否响应指定的消息;-conformsToProtocol:
检查对象是否实现了指定协议类的方法;-methodForSelector:
返回指定方法实现的地址。
通过对 Runtime 库函数的直接调用
Runtime 系统是具有公共接口的动态共享库。头文件存放于/usr/include/objc目录下,这意味着我们使用时只需要引入objc/Runtime.h
头文件即可。
许多函数可以让你使用纯 C 代码来实现 Objc 中同样的功能。除非是写一些 Objc 与其他语言的桥接或是底层的 debug 工作,你在写 Objc 代码时一般不会用到这些 C 语言函数。对于公共接口都有哪些,后面会讲到。我将会参考苹果官方的 API 文档。
Runtime的术语的数据结构
SEL
它是selector
在 Objc 中的表示(Swift 中是 Selector 类)。selector 是方法选择器,其实作用就和名字一样,日常生活中,我们通过人名辨别谁是谁,注意 Objc 在相同的类中不会有命名相同的两个方法。selector 对方法名进行包装,以便找到对应的方法实现。它的数据结构是:
typedef struct objc_selector *SEL;
我们可以看出它是个映射到方法的 C 字符串,你可以通过 Objc 编译器器命令@selector()
或者 Runtime 系统的 sel_registerName
函数来获取一个 SEL
类型的方法选择器。
id
id 是一个参数类型,它是指向某个类的实例的指针。定义如下:
typedef struct objc_object *id;
struct objc_object { Class isa; };
以上定义,看到 objc_object
结构体包含一个 isa 指针,根据 isa 指针就可以找到对象所属的类。
Class
typedef struct objc_class *Class;
Class
其实是指向 objc_class
结构体的指针。objc_class
的数据结构如下:
struct objc_class {
Class isa OBJC_ISA_AVAILABILITY;
#if !__OBJC2__
Class super_class OBJC2_UNAVAILABLE;
const char *name OBJC2_UNAVAILABLE;
long version OBJC2_UNAVAILABLE;
long info OBJC2_UNAVAILABLE;
long instance_size OBJC2_UNAVAILABLE;
struct objc_ivar_list *ivars OBJC2_UNAVAILABLE;
struct objc_method_list **methodLists OBJC2_UNAVAILABLE;
struct objc_cache *cache OBJC2_UNAVAILABLE;
struct objc_protocol_list *protocols OBJC2_UNAVAILABLE;
#endif
} OBJC2_UNAVAILABLE;
从 objc_class
可以看到,一个运行时类中关联了它的父类指针、类名、成员变量、方法、缓存以及附属的协议。
其中 objc_ivar_list
和 objc_method_list
分别是成员变量列表和方法列表:
// 成员变量列表
struct objc_ivar_list {
int ivar_count OBJC2_UNAVAILABLE;
#ifdef __LP64__
int space OBJC2_UNAVAILABLE;
#endif
/* variable length structure */
struct objc_ivar ivar_list[1] OBJC2_UNAVAILABLE;
} OBJC2_UNAVAILABLE;
// 方法列表
struct objc_method_list {
struct objc_method_list *obsolete OBJC2_UNAVAILABLE;
int method_count OBJC2_UNAVAILABLE;
#ifdef __LP64__
int space OBJC2_UNAVAILABLE;
#endif
/* variable length structure */
struct objc_method method_list[1] OBJC2_UNAVAILABLE;
}
Method
Method 代表类中某个方法的类型
typedef struct objc_method *Method;
struct objc_method {
SEL method_name OBJC2_UNAVAILABLE;
char *method_types OBJC2_UNAVAILABLE;
IMP method_imp OBJC2_UNAVAILABLE;
}
objc_method
存储了方法名,方法类型和方法实现:
- 方法名类型为
SEL
- 方法类型
method_types
是个 char 指针,存储方法的参数类型和返回值类型 method_imp
指向了方法的实现,本质是一个函数指针
Ivar
Ivar
是表示成员变量的类型。
typedef struct objc_ivar *Ivar;
struct objc_ivar {
char *ivar_name OBJC2_UNAVAILABLE;
char *ivar_type OBJC2_UNAVAILABLE;
int ivar_offset OBJC2_UNAVAILABLE;
#ifdef __LP64__
int space OBJC2_UNAVAILABLE;
#endif
}
其中 ivar_offset
是基地址偏移字节
IMP
IMP在objc.h中的定义是:
typedef id (*IMP)(id, SEL, ...);
它就是一个函数指针,这是由编译器生成的。当你发起一个 ObjC 消息之后,最终它会执行的那段代码,就是由这个函数指针指定的。而 IMP
这个函数指针就指向了这个方法的实现。
如果得到了执行某个实例某个方法的入口,我们就可以绕开消息传递阶段,直接执行方法,这在后面 Cache
中会提到。
你会发现 IMP
指向的方法与 objc_msgSend
函数类型相同,参数都包含 id
和 SEL
类型。每个方法名都对应一个 SEL
类型的方法选择器,而每个实例对象中的 SEL
对应的方法实现肯定是唯一的,通过一组 id
和 SEL
参数就能确定唯一的方法实现地址。
而一个确定的方法也只有唯一的一组 id
和 SEL
参数。
Cache
Cache 定义如下:
typedef struct objc_cache *Cache
struct objc_cache {
unsigned int mask /* total = mask + 1 */ OBJC2_UNAVAILABLE;
unsigned int occupied OBJC2_UNAVAILABLE;
Method buckets[1] OBJC2_UNAVAILABLE;
};
Cache 为方法调用的性能进行优化,每当实例对象接收到一个消息时,它不会直接在 isa 指针指向的类的方法列表中遍历查找能够响应的方法,因为每次都要查找效率太低了,而是优先在 Cache 中查找。
Runtime 系统会把被调用的方法存到 Cache 中,如果一个方法被调用,那么它有可能今后还会被调用,下次查找的时候就会效率更高。就像计算机组成原理中 CPU 绕过主存先访问 Cache 一样。
Property
typedef struct objc_property *Property;
typedef struct objc_property *objc_property_t;//这个更常用
可以通过class_copyPropertyList
和 protocol_copyPropertyList
方法获取类和协议中的属性:
objc_property_t *class_copyPropertyList(Class cls, unsigned int *outCount)
objc_property_t *protocol_copyPropertyList(Protocol *proto, unsigned int *outCount)
#import
@interface Person : NSObject
/** 姓名 */
@property (strong, nonatomic) NSString *name;
/** age */
@property (assign, nonatomic) int age;
/** weight */
@property (assign, nonatomic) double weight;
@end
以上是一个 Person 类,有3个属性。让我们用上述方法获取类的运行时属性。
unsigned int outCount = 0;
objc_property_t *properties = class_copyPropertyList([Person class], &outCount);
NSLog(@"%d", outCount);
for (NSInteger i = 0; i < outCount; i++) {
NSString *name = @(property_getName(properties[i]));
NSString *attributes = @(property_getAttributes(properties[i]));
NSLog(@"%@--------%@", name, attributes);
}
消息
一些 Runtime 术语讲完了,接下来就要说到消息了。体会苹果官方文档中的 messages aren’t bound to method implementations until Runtime。消息直到运行时才会与方法实现进行绑定。
这里要清楚一点,objc_msgSend
方法看清来好像返回了数据,其实objc_msgSend
从不返回数据,而是你的方法在运行时实现被调用后才会返回数据。下面详细叙述消息发送的步骤(如下图):
深入代码理解instance、class object、metaclass
通过上图可以看出,一个实例对象`struct objc_object`的isa指针指向它的`struct objc_class`类对象,类对象的isa指针指向它的元类;`super_class`指针指向了父类的`类对象`,而`元类`的`super_class`指针指向了父类的`元类`。
runtime的应用
发送消息
方法调用的本质,就是让对象发送消息。objc\_msgSend,只有对象才能发送消息,因此以objc开头。使用消息机制前提,必须导入#import
消息机制简单使用:
// 创建person对象
Person *p = [[Person alloc] init];
// 调用对象方法
[p eat];
// 本质:让对象发送消息
objc_msgSend(p, @selector(eat));
// 调用类方法的方式:两种
// 第一种通过类名调用
[Person eat];
// 第二种通过类对象调用
[[Person class] eat];
// 用类名调用类方法,底层会自动把类名转换成类对象调用
// 本质:让类对象发送消息
objc_msgSend([Person class], @selector(eat));
我们可以通过clang来查看代码生成的CPP代码。
例如:
clang 将oc main.m文件转成c++ main\_cpp文件代码:
xcrun -sdk iphoneos clang -arch arm64 -rewrite-objc main.m -o main_cpp.cpp
交换方法
交换两个方法的实现一般写在类的load方法里面,因为load方法会在程序运行前加载一次,而initialize方法会在类或者子类在 第一次使用的时候调用,当有分类的时候会调用多次。
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
// Do any additional setup after loading the view, typically from a nib.
// 需求:给imageNamed方法提供功能,每次加载图片就判断下图片是否加载成功。
// 步骤一:先搞个分类,定义一个能加载图片并且能打印的方法+ (instancetype)imageWithName:(NSString *)name;
// 步骤二:交换imageNamed和imageWithName的实现,就能调用imageWithName,间接调用imageWithName的实现。
UIImage *image = [UIImage imageNamed:@"123"];
}
@end
@implementation UIImage (Image)
// 加载分类到内存的时候调用
+ (void)load
{
// 交换方法
// 获取imageWithName方法地址
Method imageWithName = class_getClassMethod(self, @selector(imageWithName:));
// 获取imageWithName方法地址
Method imageName = class_getClassMethod(self, @selector(imageNamed:));
// 交换方法地址,相当于交换实现方式
method_exchangeImplementations(imageWithName, imageName);
}
// 不能在分类中重写系统方法imageNamed,因为会把系统的功能给覆盖掉,而且分类中不能调用super.
// 既能加载图片又能打印
+ (instancetype)imageWithName:(NSString *)name
{
// 这里调用imageWithName,相当于调用imageName
UIImage *image = [self imageWithName:name];
if (image == nil) {
NSLog(@"加载空的图片");
}
return image;
}
@end
类/对象的关联对象
使用方式一:给分类添加属性
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
// Do any additional setup after loading the view, typically from a nib.
// 给系统NSObject类动态添加属性name
NSObject *objc = [[NSObject alloc] init];
objc.name = @"小码哥";
NSLog(@"%@",objc.name);
}
@end
// 定义关联的key
static const char *key = "name";
@implementation NSObject (Property)
- (NSString *)name
{
// 根据关联的key,获取关联的值。
return objc_getAssociatedObject(self, key);
}
- (void)setName:(NSString *)name
{
// 第一个参数:给哪个对象添加关联
// 第二个参数:关联的key,通过这个key获取
// 第三个参数:关联的value
// 第四个参数:关联的策略
objc_setAssociatedObject(self, key, name, OBJC_ASSOCIATION_RETAIN_NONATOMIC);
}
@end
使用方式二:给对象添加关联对象。
/**
* 删除点击
* @param recId 购物车ID
*/
- (void)shopCartCell:(BSShopCartCell *)shopCartCell didDeleteClickedAtRecId:(NSString *)recId
{
UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"" message:@"确认要删除这个宝贝" delegate:self cancelButtonTitle:@"取消" otherButtonTitles:@"确定", nil];
// 传递多参数
objc_setAssociatedObject(alert, "suppliers_id", @"1", OBJC_ASSOCIATION_RETAIN_NONATOMIC);
objc_setAssociatedObject(alert, "warehouse_id", @"2", OBJC_ASSOCIATION_RETAIN_NONATOMIC);
alert.tag = [recId intValue];
[alert show];
}
/**
* 确定删除操作
*/
- (void)alertView:(UIAlertView *)alertView clickedButtonAtIndex:(NSInteger)buttonIndex {
if (buttonIndex == 1) {
NSString *warehouse_id = objc_getAssociatedObject(alertView, "warehouse_id");
NSString *suppliers_id = objc_getAssociatedObject(alertView, "suppliers_id");
NSString *recId = [NSString stringWithFormat:@"%ld",(long)alertView.tag];
}
}
动态添加方法
简单使用:
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
// Do any additional setup after loading the view, typically from a nib.
Person *p = [[Person alloc] init];
// 默认person,没有实现eat方法,可以通过performSelector调用,但是会报错。
// 动态添加方法就不会报错
[p performSelector:@selector(eat)];
}
@end
@implementation Person
// void(*)()
// 默认方法都有两个隐式参数,
void eat(id self,SEL sel)
{
NSLog(@"%@ %@",self,NSStringFromSelector(sel));
}
// 当一个对象调用未实现的方法,会调用这个方法处理,并且会把对应的方法列表传过来.
// 刚好可以用来判断,未实现的方法是不是我们想要动态添加的方法
+ (BOOL)resolveInstanceMethod:(SEL)sel
{
if (sel == @selector(eat)) {
// 动态添加eat方法
// 第一个参数:给哪个类添加方法
// 第二个参数:添加方法的方法编号
// 第三个参数:添加方法的函数实现(函数地址)
// 第四个参数:函数的类型,(返回值+参数类型) v:void @:对象->self :表示SEL->_cmd
class_addMethod(self, @selector(eat), eat, "v@:");
}
return [super resolveInstanceMethod:sel];
}
@end
字典转模型KVC实现
// Ivar:成员变量 以下划线开头
// Property:属性
+ (instancetype)modelWithDict:(NSDictionary *)dict
{
id objc = [[self alloc] init];
// runtime:根据模型中属性,去字典中取出对应的value给模型属性赋值
// 1.获取模型中所有成员变量 key
// 获取哪个类的成员变量
// count:成员变量个数
unsigned int count = 0;
// 获取成员变量数组
Ivar *ivarList = class_copyIvarList(self, &count);
// 遍历所有成员变量
for (int i = 0; i < count; i++) {
// 获取成员变量
Ivar ivar = ivarList[i];
// 获取成员变量名字
NSString *ivarName = [NSString stringWithUTF8String:ivar_getName(ivar)];
// 获取成员变量类型
NSString *ivarType = [NSString stringWithUTF8String:ivar_getTypeEncoding(ivar)];
// @\"User\" -> User
ivarType = [ivarType stringByReplacingOccurrencesOfString:@"\"" withString:@""];
ivarType = [ivarType stringByReplacingOccurrencesOfString:@"@" withString:@""];
// 获取key
NSString *key = [ivarName substringFromIndex:1];
// 去字典中查找对应value
// key:user value:NSDictionary
id value = dict[key];
// 二级转换:判断下value是否是字典,如果是,字典转换层对应的模型
// 并且是自定义对象才需要转换
if ([value isKindOfClass:[NSDictionary class]] && ![ivarType hasPrefix:@"NS"]) {
// 字典转换成模型 userDict => User模型
// 转换成哪个模型
// 获取类
Class modelClass = NSClassFromString(ivarType);
value = [modelClass modelWithDict:value];
}
// 给模型中属性赋值
if (value) {
[objc setValue:value forKey:key];
}
}
return objc;
}
+ load 和 + initialize 原理讲解
+load 总结
- load 方法调用在main之前,并且不需要我们初始化,程序启动就会把所有文件加载
- 主类的调用优先于分类,分类的调动优先于当前类优先于分类
- 主类和分类的调用顺序跟编译顺序无关
- 分类之间加载,也就是平级之前加载取决于编译顺序,谁先编译就先加载谁
注意事项
1.我们发现。load 的加载比main 还要早,所以如果我们再load方法里面做了耗时的操作,那么一定会影响程序的启动时间,所以在load里面一定不要写耗时的代码。
2.不要在load里面取加载对象,因为我们再load调用的时候根本就不确定我们的对象是否已经初始化了,所以不要去做对象的初始化
调用顺序延伸(category)
分类中的同名方法,源码中是按照逆序加载的,也就是说后编译的分类方法会覆盖前面所有的同名的方法,分类还有一个特性就是,不管把声明写在主类还是分类,只要分类中实现了就可以找到。
+ initialize
+initialize本质为objc/_msgSend,如果子类没有实现initialize则会去父类查找,如果分类中实现,那么会覆盖主类,和runtime消息转发逻辑一样
initialize总结
1.initialize 会在类第一次接收到消息的时候调用
2.先调用父类的 initialize,然后调用子类。
3.initialize 是通过 objc_msgSend 调用的
4.如果子类没有实现 initialize,会调用父类的initialize(父类可能被调用多次)
5.如果分类实现了initialize,会覆盖本类的initialize方法