[HADOOP] 简单了解NameNode的ZKFC机制

博客原文:hackershell

之前在准备中级课程PPT,整理了下HA的基本内容,并且感谢松哥为我们提供了HA不会切的问题,以至于之后刚好出现的NameNode宕机,能够快速解决。

NameNode的HA可以个人认为简单分为共享editLog机制和ZKFC对NameNode状态的控制

在此之前,我先提几个问题:

  • 一般导致NameNode切换的原因

  • ZKFC的作用是什么?如何判断一个NN是否健康

  • NameNode HA是如何实现的?

  • NameNode因为断电导致不能切换的原理,怎样进行恢复

一般导致NameNode切换的原因

随着集群规模的变大和任务量变多,NameNode的压力会越来越大,一些默认参数已经不能满足集群的日常需求,除此之外,异常的Job在短时间内创建和删除大量文件,引起NN节点频繁更新内存的数据结构从而导致RPC的处理时间变长,CallQueue里面的RpcCall堆积,甚至严重的情况下打满CallQueue,导致NameNode响应变慢,甚至无响应,ZKFC的HealthMonitor监控自己的NN异常时,则会断开与ZooKeeper的链接,从而释放锁,另外一个NN上的ZKFC进行抢锁进行Standby到Active状态的切换。这是一般引起的切换的流程。

当然,如果你是手动去切换这也是可以的,当Active主机出现异常时,有时候则需要在必要的时间内进行切换。

ZKFC的作用是什么?如何判断一个NN是否健康

在正常的情况下,ZKFC的HealthMonitor主要是监控NameNode主机上的磁盘还是否可用(空间),我们都知道,NameNode负责维护集群上的元数据信息,当磁盘不可用的时候,NN就该进行切换了。

 /**
   * Return true if disk space is available on at least one of the configured
   * redundant volumes, and all of the configured required volumes.
   * 
   * @return True if the configured amount of disk space is available on at
   *         least one redundant volume and all of the required volumes, false
   *         otherwise.
   */
  public boolean hasAvailableDiskSpace() {
    return NameNodeResourcePolicy.areResourcesAvailable(volumes.values(),
        minimumRedundantVolumes);
  }

除了可用状态(SERVICE_HEALTHY)之外,还有SERVICE_UNHEALTHY(磁盘空间不可用),SERVICE_NOT_RESPONDING(其他的一些情况)状态,在这两个状态中,它都认为NN是不健康的。

NameNode HA是如何实现的?

我们前面说到,ZKFC是如何判断NN是否健康,接下来当NN处于非健康状态时,NameNode是如何进行切换的呢?

[HADOOP] 简单了解NameNode的ZKFC机制_第1张图片

在ZKFailoverController这个类中,实行了两个重要的Callbacks函数,一个叫ElectorCallbacks,另一个叫HealthCallbacks,顾名思义就是选举和健康检查用的回调函数,其中还有两个重要的组成部分elector(ActiveStandbyElector)healthMonitor(HealthMonitor),总体的就如上图所示。

ElectorCallbacks:

/**
   * Callbacks from elector
   */
  class ElectorCallbacks implements ActiveStandbyElectorCallback {
    @Override
    public void becomeActive() throws ServiceFailedException {
      ZKFailoverController.this.becomeActive();
    }

    @Override
    public void becomeStandby() {
      ZKFailoverController.this.becomeStandby();
    }
...
}

HealthCallbacks:

 /**
   * Callbacks from HealthMonitor
   */
  class HealthCallbacks implements HealthMonitor.Callback {
    @Override
    public void enteredState(HealthMonitor.State newState) {
      setLastHealthState(newState);
      recheckElectability();
    }
  }

对于HealthMonitor来说,在ZKFC进程启动的时候,就已经将HealthCallbacks注册进去了,HealthMonitor都会定期的检查NameNode是否健康,我们可以通过监控ha.health-monitor.check-interval.ms去设置监控的间隔时间和通过参数ha.health-monitor.rpc-timeout.ms设置timeout时间,当集群变大的时候,需要适当的设置改值,让ZKFC的HealthMonitor没那么“敏感”

ZKFC通过RPC调用监控NN进程,当出现异常时,则进入不同的处理逻辑,以下是简化的代码:

 private void doHealthChecks() throws InterruptedException {
    while (shouldRun) {     
      try {
        status = proxy.getServiceStatus();
        proxy.monitorHealth();
        healthy = true;
      } catch (HealthCheckFailedException e) {
       ...
        enterState(State.SERVICE_UNHEALTHY);
      } catch (Throwable t) {
       ...
        enterState(State.SERVICE_NOT_RESPONDING);
        Thread.sleep(sleepAfterDisconnectMillis);
        return;
      }
      ...
}

回调函数就是这么起作用啦,那么回调函数做了什么呢?总的来说,如果NN健康(SERVICE_HEALTHY)就加入选举,如果不健康就退出选举(SERVICE_UNHEALTHYSERVICE_NOT_RESPONDING

 case SERVICE_UNHEALTHY:
        case SERVICE_NOT_RESPONDING:
          LOG.info("Quitting master election for " + localTarget +
              " and marking that fencing is necessary");
          elector.quitElection(true);
          break;

说到退出选举就关系到elector(ActiveStandbyElector)了,true代表如果NN从Actice变为Standby出现异常是要去fence的,这就是为啥NN会挂掉的原因之一

如何退出选举?就是close zkClient的链接,让ZooKeeper上面的维持的选举锁消失

void terminateConnection() {
    if (zkClient == null) {
      return;
    }
    LOG.debug("Terminating ZK connection for " + this);
    ZooKeeper tempZk = zkClient;
    ...
    try {
      tempZk.close();
    } catch(InterruptedException e) {
      LOG.warn(e);
    }
   ...
  }

对于ActiveStandbyElector来说,他有个WatcherWithClientRef类专门用来监听ZooKeeper上的的znode的事件变化,当事件变化时,就会调用ActiveStandbyElector的processWatchEvent的方法

watcher = new WatcherWithClientRef();
ZooKeeper zk = new ZooKeeper(zkHostPort, zkSessionTimeout, watcher);

/**
   * Watcher implementation which keeps a reference around to the
   * original ZK connection, and passes it back along with any
   * events.
   */
  private final class WatcherWithClientRef implements Watcher {
...
    @Override
        public void process(WatchedEvent event) {
          hasReceivedEvent.countDown();
          try {
            hasSetZooKeeper.await(zkSessionTimeout, TimeUnit.MILLISECONDS);
            ActiveStandbyElector.this.processWatchEvent(
                zk, event);
          } catch (Throwable t) {
            fatalError(
                "Failed to process watcher event " + event + ": " +
                StringUtils.stringifyException(t));
          }
        }
...
}

在ActiveStandbyElector的processWatchEvent方法中,处理来自不同事件的逻辑重新加入选举或者继续监控znode的变化,当另外一个ZKFC监控到事件变化得时候,就去抢锁,抢锁实质上就是创建znode的过程,而且创建的是CreateMode.EPHEMERAL类型的,所以,当HealthMonitor监控到NN不健康时,就会断开连接,节点就会消失,watcher就会监控到NodeDeleted事件,进行创建节点。

 switch (eventType) {
      case NodeDeleted:
        if (state == State.ACTIVE) {
          enterNeutralMode();
        }
        joinElectionInternal();
        break;
      case NodeDataChanged:
        monitorActiveStatus();
        break;

又因为ActiveStandbyElector实现了StatCallback接口,当节点创建成功时,就会回调processResult方法看是否创建成功,如果创建成功则去检查zkBreadCrumbPath是否存在之前的Active节点,如果存在,则调用RPC让其变为Standby,看能否转变成功,否则则SSH过去fence掉NN进程。,保持Active节点只有一个,并且恢复正常服务

NameNode因为断电导致不能切换的原理,怎样进行恢复

ActiveNN断电,网络异常,负载过高或者机器出现异常无法连接,Standby NN无法转化为Active,使得HA集群无法对外服务,原因是Active NN节点在断电和不能服务的情况下,zknode上保存着ActiveBreadCrumb, ActiveStandbyElectorLock两个Active NN的信息,ActiveStandbyElectorLock由于Active NN出现异常断开,Standby NN去抢锁的时候就会去检查ActiveBreadCrumb是否有上一次的Active NN节点,如果有,就会就会尝试让Active NN变为Standby NN,自己转化为Active NN,但是由于调用出现异常,所以会采用ssh的方式去Fence之前的Active NN,因为机器始终连接不上,所以无法确保old active NN变为Standby NN,自己也无法变为Active NN,所以还是保持Standby状态,避免出现脑裂问题。

解决方案是确定Active关机的情况下重新hdfs zkfc -formatZK就可以了。

总 结

NN GC或者在压力大的情况下可以调整GC算法和增加NameNode节点的线程数,加快NN对请求的处理速度,也可以分离节点的端口dfs.namenode.rpc-address.ns1.nn2dfs.namenode.servicerpc-address.ns1.nn2分离client和datanode节点等服务类型的请求,进行分担压力,也可以适当的调整ZKFC的监控timeout的时间等等

但是遇到异常的job,只能通过别的方式去处理问题了,祷告吧!哈哈

你可能感兴趣的:(hadoop2.0,java,分布式文件系统)