python -m pip install pyecharts
python -m pip install echarts-countries-pypkg
python -m pip install echarts-china-provinces-pypkg
python -m pip install echarts-china-cities-pypkg
python -m pip install echarts-china-counties-pypkg
https://pyecharts.org/#/zh-cn/intro
from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker
c = (
Bar()
.add_xaxis(Faker.choose()) #x轴传入的数据 list
.add_yaxis("商家A", Faker.values()) #传入第一个y轴数据
.add_yaxis("商家B", Faker.values()) #传入第二个y轴数据
.set_global_opts(title_opts=opts.TitleOpts(title="Bar-MarkLine(指定类型)")) #图表名称
.set_series_opts(
label_opts=opts.LabelOpts(is_show=False), #是否显示y轴对应数据
markline_opts=opts.MarkLineOpts(
data=[
opts.MarkLineItem(type_="min", name="最小值"),
opts.MarkLineItem(type_="max", name="最大值"),
opts.MarkLineItem(type_="average", name="平均值"),
]
),
)
.render("柱状图.html") #图表返回的文件类型以及名称
)
import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker
c = (
Line()
.add_xaxis(Faker.choose())#x轴数据
.add_yaxis("商家A", Faker.values()) #y轴数据
.add_yaxis("商家B", Faker.values()) #y轴数据
.set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例"))
.render("line_base.html")
)
from pyecharts import options as opts
from pyecharts.charts import Scatter
from pyecharts.faker import Faker
c = (
Scatter()
.add_xaxis(Faker.choose()) #x轴数据
.add_yaxis("商家A", Faker.values()) #y轴数据
.add_yaxis("商家B", Faker.values()) #轴数据
.set_global_opts(
title_opts=opts.TitleOpts(title="Scatter-VisualMap(Size)"), #图表标题
visualmap_opts=opts.VisualMapOpts(type_="size", max_=150, min_=20), #设置左下角比较参数表
)
.render("scatter_visualmap_size.html")
)
from pyecharts import options as opts
from pyecharts.charts import Bar, Line
from pyecharts.faker import Faker
v1 = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]
v2 = [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]
v3 = [2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2]
bar = (
Bar()
.add_xaxis(Faker.months) #x轴数据
.add_yaxis("蒸发量", v1) #柱状图y轴数据1
.add_yaxis("降水量", v2) #柱状图y轴数据2
.extend_axis(
yaxis=opts.AxisOpts(
axislabel_opts=opts.LabelOpts(formatter="{value} °C"), interval=5
)
)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False)) #是否显示y轴数值数据
.set_global_opts(
title_opts=opts.TitleOpts(title="Overlap-bar+line"),
yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(formatter="{value} ml")),
)
)
line = Line().add_xaxis(Faker.months).add_yaxis("平均温度", v3, yaxis_index=1) #折线图数据
bar.overlap(line)
bar.render("overlap_bar_line.html")
from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker
c = (
Pie()
.add(
"",
[
list(z)
for z in zip(
Faker.choose() + Faker.choose() + Faker.choose(),
Faker.values() + Faker.values() + Faker.values(),
)
],
center=["40%", "50%"],
)
.set_global_opts(
title_opts=opts.TitleOpts(title="Pie-Legend 滚动"),
legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"),
)
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
.render("pie_scroll_legend.html")
)
#[(数据说明,数据值),()]