spfa和堆优化的dij和prim

1 spfa虽然已经死了,可是他还有一个作用就是判断负环和正环(如果在一个点跑了大于n次那么这个图就存在负环)正环跑最长路,负环跑最短路

/*
I am nothing but I must be everything.
*/
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
 
typedef long long ll;
using namespace std;
const ll mod = 1e9 + 7;
const ll maxn = 2005;
typedef pair p;
 
int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0),cout.tie(0);
 
    ll t;
    cin >> t;
    while(t--)
    {
        vector

a[maxn]; ll dis[maxn],n,m,sum[maxn] = {0}; queueq; cin >> n >> m; for(int i = 1; i <= m; i ++) { ll x,y,z; cin >> x >> y >> z; if(z >= 0) { a[x].push_back(make_pair(y,z)); a[y].push_back(make_pair(x,z)); } else { a[x].push_back(make_pair(y,z)); } } memset(dis, 0x3f, sizeof(dis)); ll flag[maxn] = {0}; while(!q.empty())q.pop(); q.push(1); dis[1] = 0; flag[1] = 1; sum[1]++; while(!q.empty()) { ll k = q.front(); q.pop(); flag[k] = 0; //if(dis[en] < be)continue; for(int i = 0; i < a[k].size(); i ++) { ll to = a[k][i].first; ll wei = a[k][i].second; if(dis[to] > dis[k] + wei) { dis[to] = dis[k] + wei; if(!flag[to]) { flag[to] = 1; q.push(to); sum[to] ++; } if(sum[k] > n){cout << "YE5" << endl;goto l1;} } } } cout << "N0" << endl; l1 :; } return 0; }

2 堆优化的dij,相当于每次找到那个最小值全是用堆这样时间复杂度就变成了log2n;那么总的时间复杂度就是(n + m)log2n;

#include 
#include 
#include 
#include 
#include 
#include 
#define maxn 200005
#define inf 0x3f3f3f3f
typedef long long ll;

using namespace std;

ll n,m,k;
ll dis1[maxn],dis2[maxn];
bool flag[maxn];
struct node
{
    ll x;
    ll d;
    node(ll xx,ll dd):x(xx),d(dd){};
};
bool operator < (const node a,const node b)
{
    return a.d > b.d;
}
vector< pair > p[maxn];
void dij(ll k)
{
    priority_queueq;

    fill(dis1,dis1+n+1,inf);
    fill(dis2,dis2+n+1,inf);

    dis1[k] = 0;
    q.push(node(1,0));
    while(!q.empty())
    {
        node now = q.top();
        q.pop();
        if(flag[now.x])continue;
        flag[now.x] = 1;
        for(int i = 0; i < p[now.x].size(); i ++)
        {
            ll v = p[now.x][i].first;
            ll w = p[now.x][i].second;
            ll d = dis1[now.x] + w;
            if(dis1[v] > d && !flag[v])
            {
                dis1[v] = d;
                q.push(node(v,dis1[v]));
            }

//            if(dis2[v] > d && dis1[v] < d)
//            {
//                dis2[v] = d;
//                q.push(node(v,dis2[v]));
//            }
        }
    }

    //printf("%lld\n",dis2[n]);
}

int main()
{
    scanf("%lld%lld%lld",&n,&m,&k);

    for(int i = 1; i <= m; i ++)
    {
        ll a,b,c;
        scanf("%lld%lld%lld",&a,&b,&c);
        p[a].push_back(make_pair(b,c));
        //p[b].push_back(make_pair(a,c));
    }

    dij(k);

    for(int i = 1; i <= n; i ++)
    {
        cout << dis1[i] << " ";
    }
    cout << endl;

    return 0;
}

堆优化的prim算法(和dij非常相似这里不做过多解释)

/*
I am nothing but I must be everything.
*/
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

typedef long long ll;
using namespace std;
const ll mod = 1e9 + 7;
const ll maxn = 1e5 + 5;
typedef pair p;
vector

a[maxn]; ll dis[maxn],n,m; ll prim() { ll ans = 0; bool flag[maxn] = {0}; memset(dis + 1, 0x3f, n * sizeof(dis[1])); priority_queue,greater

>q; q.push(p(0,1)); dis[1] = 0; while(!q.empty()) { p k = q.top(); q.pop(); ll be = k.first; ll en = k.second; flag[en] = true; if(dis[en] < be)continue; for(int i = 0; i < a[en].size(); i ++) { ll to = a[en][i].first; ll wei = a[en][i].second; if(!flag[to] && dis[to] > wei) { dis[to] = wei; q.push(p(dis[to],to)); } } ans += dis[en]; } return ans; } int main() { cin >> n >> m; for(int i = 1; i <= m; i ++) { ll x,y,z; cin >> x >> y >> z; a[x].push_back(make_pair(y,z)); a[y].push_back(make_pair(x,z)); } cout << prim() << endl; return 0; }

 

你可能感兴趣的:(最短路,堆)