Pytorch部署:用C++调用Pytorch生成的模型

Loading a TorchScript Model in C++

The following paragraphs will outline the path PyTorch provides to go from an existing Python model to a serialized representation that can be loaded and executed purely from C++, with no dependency on Python.

A PyTorch model’s journey from Python to C++ is enabled by Torch Script, a representation of a PyTorch model that can be understood, compiled and serialized by the Torch Script compiler.

步骤:

  • Step 1: Converting Your PyTorch Model to Torch Script
  • Step 2: Serializing Your Script Module to a File
  • Step 3: Loading Your Script Module in C++
  • Step 4: Executing the Script Module in C++
  • Step 5: Getting Help and Exploring the API

 

总结:

先生成torch script,这个script对象能被torch script compiler理解编译序列化。

通过:

traced_script_module = torch.jit.trace(model, example)

my_module = MyModule(10,20)

sm = torch.jit.script(my_module)

方法。

然后serlizing,变成pt文件that can be loaded and executed purely from C++

traced_script_module.save("traced_resnet_model.pt")

然后C++中load它,

module = torch::jit::load(argv[1]);

输入输出

std::vector inputs;

inputs.push_back(torch::ones({1, 3, 224, 224}));

// Execute the model and turn its output into a tensor.

at::Tensor output = module.forward(inputs).toTensor();

std::cout << output.slice(/*dim=*/1, /*start=*/0, /*end=*/5) << '\n';

注意:用C++使用pt模型的时候要依赖于libtorch

 

参考文献

https://pytorch.org/tutorials/advanced/cpp_export.html

你可能感兴趣的:(python,C++,Pytorch)