- Keras、TensorFlow、PyTorch框架对比及服务器配置揭秘
小深ai硬件分享
人工智能深度学习服务器
深度学习框架:开启智能大门的钥匙在数字化浪潮中,深度学习如明星照亮众多领域。从智能安防的人脸识别,到医疗图像分析、电商商品推荐、智能语音助手等,其身影无处不在,改变着生活与工作方式。在深度学习领域,Keras、TensorFlow和PyTorch是主流框架,能助开发者构建强大智能模型。但这些框架要充分发挥作用,离不开合适的服务器配置,就像魔法师需要魔法棒和魔力,下面我们就来看看这些具体的框架吧:框
- OpenCV 笔记(25):图像的仿射变换
Java与Android技术栈
opencv笔记人工智能计算机视觉
1.几何变换图像的几何变换是指将一幅图像中的坐标位置映射到另一幅图像中的新坐标位置,其实质是改变像素的空间位置,估算新空间位置上的像素值。几何变换不改变图像的像素值,只是在图像平面上进行像素的重新安排。以下是常用的几种几何变换:旋转:将图像旋转指定角度。缩放:按缩放因子调整图像大小,使其变大或变小。平移:将图像从当前位置移动到新位置。错切:沿特定轴倾斜图像。仿射变换:一个更广泛的类别,包括单个变换
- Kotlin Bytedeco OpenCV 图像图像49 仿射变换 图像裁剪
深色風信子
kotlinopencv仿射变换图像裁剪bytedecojavacpp
KotlinBytedecoOpenCV图像图像49仿射变换图像裁剪1添加依赖2测试代码3测试结果在OpenCV中,仿射变换(AffineTransformation)和透视变换(PerspectiveTransformation)是两种常用的图像几何变换方法。变换方法适用场景仿射变换简单的几何变换(平移、旋转、缩放、剪切)。透视变换改变图像视角和模拟3D投影效果。变换方法解释特点应用场景实现方法
- 大语言模型原理与工程实践:网页数据
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:网页数据1.背景介绍在当今信息爆炸的时代,网页数据成为了大数据的重要来源之一。网页数据不仅包含了丰富的文本信息,还包括了图像、视频、音频等多媒体内容。大语言模型(LargeLanguageModels,LLMs)作为自然语言处理(NLP)领域的前沿技术,能够从海量的网页数据中提取有价值的信息,进行文本生成、情感分析、问答系统等多种任务。大语言模型的成功离不开深度学习技术的
- AI驱动电商搜索导购:技术创新与应用
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
文章标题《AI驱动电商搜索导购:技术创新与应用》关键词:人工智能,电商搜索导购,机器学习,深度学习,推荐系统,自然语言处理,个性化搜索,图像识别,应用案例,未来展望。摘要:本文旨在探讨人工智能(AI)在电商搜索导购领域的应用,分析其技术创新和实际应用案例,探讨AI驱动电商搜索导购的未来发展趋势。文章首先介绍了AI在电商搜索导购中的角色和优势,然后深入探讨了AI基础理论和搜索导购技术原理。接着,文章
- 利用MediaWikiDump解析和处理Wiki数据
srudfktuffk
python
MediaWikiXMLDumps包含了Wiki页面及其所有修订的内容,但不包括与站点相关的数据,比如用户帐户、图像和编辑日志。因此,虽然它们没有创建Wiki数据库的完整备份,却在处理Wiki内容时具有独特的价值。技术背景介绍MediaWiki是许多Wiki(例如Wikipedia)后台的开源软件。使用MediaWikiXMLDumps,你可以获得Wiki页面的详细修订历史记录。这在数据分析和内容
- 3D Gaussian Splatting 部署
学术菜鸟小晨
最新人工智能技术三维重建
简介:3DGaussianSplatting是一种用一组2d图像创建3d场景的方法,你只需要一个场景的视频或者一组照片就可以获得这个场景的高质量3d表示,使你可以从任何角度渲染它。它们是一类辐射场方法(如NeRF),但同时训练速度更快(同等质量)、渲染速度更快,并达到更好或相似的质量。3DGaussianSplatting可以实现无界且完整的场景1080p分辨率下进行高质量实时(≥100fps)视
- OpenCV相机标定与3D重建(64)用于迭代地优化图像点的位置函数undistortImagePoints()的使用
jndingxin
OpenCVopencv人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述计算无畸变图像点的位置。cv::undistortImagePoints这个函数用于迭代地优化图像点的位置,以补偿镜头畸变,并且允许指定终止条件来控制迭代过程。函数原型voidcv::undistortImagePoints(InputArraysrc,Outpu
- OpenCV相机标定与3D重建(65)对图像点进行去畸变处理函数undistortPoints()的使用
jndingxin
OpenCVopencv
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述从观测到的点坐标计算理想点坐标。该函数类似于undistort和initUndistortRectifyMap,但它操作的是稀疏点集而不是光栅图像。此外,该函数执行与projectPoints相反的变换。对于3D对象,它不会重建其3D坐标;但对于平面对象,如果指定
- 【机器学习实战入门】使用OpenCV进行性别和年龄检测
精通代码大仙
数据挖掘深度学习python机器学习pythonopencv数据挖掘人工智能
GenderandAgeDetectionPython项目首先,向您介绍用于此高级Python项目的性别和年龄检测中的术语:什么是计算机视觉?计算机视觉是一门让计算机能够像人类一样观察和识别数字图像和视频的学科。它面临的挑战大多源于对生物视觉有限的了解。计算机视觉涉及获取、处理、分析和理解数字图像,旨在从现实世界中提取高维数据,从而生成可用来做决策的符号或数值信息。该过程通常包括物体识别、视频跟踪
- OpenCV相机标定与3D重建(2)鱼眼相机模型
jndingxin
OpenCV数码相机opencv3d
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述鱼眼相机是一种具有非常宽视野的相机,通常会产生强烈的径向畸变。鱼眼相机模型旨在捕捉这种畸变,以便能够准确地处理和校正图像。鱼眼相机模型通常使用多项式函数来描述径向畸变。定义:设P是世界参考系中的一个3D点,其坐标为X(存储在矩阵X中)。点P在相机参考系中的坐标向量
- 机器学习笔记 - 机器学习/深度学习实战案例合集
坐望云起
深度学习从入门到精通机器学习深度学习人工智能案例应用神经网络
一、简述如何学习机器学习/深度学习,理论和实践都很重要,理论上的内容需要看课程、读教材。但是实践需要自己动手,实践之后自然会对理论有更深入的理解。怎么实践?借用欧阳修《卖油翁》的话”无他,但手熟尔“。就是多看多写多跑。下面创建这个github的目的是为了存放一些图像处理/计算机视觉/机器学习/深度学习的示例代码集合,不定期会添加新的示例,可供参考。GitHub-bashendixie/ml_too
- html 大概的知识点
clock的时钟
前端html前端
html01-标签的用法文字内容换行水平线02-html基本骨架 Document 03-标签的关系 嵌套,并列04-注释添加或者删除都是ctrl+/05-标题标签 标题标签一共6个级别06-换行和水平线标签强制换行的标签是什么?水平线标签是有了这个,会出现一条水平线09-格式化标签文本格式化标签加粗加粗倾斜倾斜下划线下划线删除线删除线10-图像化标签//alt表示替换文
- OpenCV相机标定与3D重建(63)校正图像的畸变函数undistort()的使用
jndingxin
OpenCVopencv3d
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述转换图像以补偿镜头畸变。该函数通过变换图像来补偿径向和切向镜头畸变。此函数仅仅是initUndistortRectifyMap(使用单位矩阵R)和remap(使用双线性插值)的组合。有关执行的具体变换详情,请参阅前者函数。对于在源图像中没有对应像素的目的图像中的像
- ApexCharts 图表入门例子
后端java
常见的图形库系列常见的图形库概览-00-overview常见的图形库概览-01-Chart.js入门例子常见的图形库概览-03-D3.js入门例子HighCharts交互式图表-01-入门介绍Plotly函数图像绘制ApexCharts图表入门例子Victory图表基于React,适合React项目,支持移动端Recharts入门例子AntVG2入门例子图表库C3.js入门例子图表库GoogleC
- 一文大白话讲清楚webpack基本使用——8——开发环境和生产环境的配置和区别
16年上任的CTO
webpackwebpack前端node.jswebpack开发环境webpack生产环境
一文大白话讲清楚webpack基本使用——8——开发环境和生产环境的配置和区别1.建议按文章顺序从头看,一看到底,豁然开朗第一篇:一文大白话讲清楚啥是个webpack第二篇:一文大白话讲清楚webpack基本使用——1——完成webpack的初步构建第三篇一文大白话讲清楚webpack基本使用——2——css相关loader的配置和使用第四篇一文大白话讲清楚webpack基本使用——3——图像相关
- 基于多模态信息抽取的菜品知识图谱构建 思维导图-java架构
用心去追梦
java架构开发语言
构建一个基于多模态信息抽取的菜品知识图谱,特别是在Java架构下的实现,可以按照以下结构来组织思维导图的内容。这个思维导图将帮助理解从数据获取、处理到知识图谱构建的关键步骤,并且涵盖技术选型和系统设计。思维导图结构1.项目背景知识图谱的意义提升搜索体验推荐系统优化菜品知识图谱的目标食材关联菜系分类健康饮食建议2.多模态数据收集文本数据源美食博客和论坛配方网站图像数据源社交媒体图片餐厅菜单照片视频数
- MATLAB符号函数绘制各种函数图像,ezplot()函数 ezplot3()函数
Python数据分析与机器学习
可视化函数图像matlab画图matlab开发语言信息可视化
我们学习常遇见的函数种类有显函数,隐函数,参数方程三种,对于隐函数绘制图像比较麻烦,给大家介绍一种简单实用的一中画函数的方法。函数介绍二维曲线ezplot()函数ezplot()函数用于绘制显函数,隐函数,参数方程二维图像,函数格式ezplot(f)直接绘制图像ezplot(f,[min,max])指定函数x的值域范围三维曲线ezplot3()函数ezplot3()函数用于绘制显函数,隐函数,参数
- gradio库的基本使用
Echo.....
pythonpython
Gradio(通过pipinstallgradio安装)是一个用于创建交互式界面的Python库。它允许你基于预训练模型、函数或任意代码块创建实时演示和部署模型的图形用户界面(GUI)。使用Gradio库,你可以轻松创建Web界面,用于输入数据、调用模型、显示结果,并为用户提供与模型交互的功能。它支持多种输入类型(如文本框、图片上传、滑块等)和输出展示方式(如图像展示、文本展示等)。你可以根据需要
- 利用jieba库和wordcloud库绘制词云图像
baichui
python学习python
目录jieba库的使用利用jieba库获取红楼梦中人物名字的出现频次wordcloud库的使用根据红楼梦中人物出现频次,制作词云图jieba库的使用jieba库是优秀的中文分词工具,能对文本进行分词处理常用函数:lcut与cutlcut函数接受一个中文文本字符串,对该文本进行分词处理,返回一个分词列表(推荐使用)而jieba.cut生成的是一个生成器,generator,可以通过for循环来取里面
- 学习记录:OpenMV 摄像头的一个简单示例,主要实现了对摄像头的基本设置和图像采集,并计算和显示采集图像的帧率。
DIY机器人工房
openmv学习笔记学习opencvpython
代码解释:整体功能:此代码是使用OpenMV摄像头的一个简单示例,主要实现了对摄像头的基本设置和图像采集,并计算和显示采集图像的帧率。首先,对摄像头进行初始化,包括重置、设置像素格式和帧大小,并等待设置生效。然后创建一个时间对象用于计算帧率。最后在一个无限循环中不断采集图像并打印出每秒采集的帧数。#此作品遵循MIT许可证授权。#版权所有(c)2013-2023OpenMVLLC。保留所有权利。#h
- c#视觉应用开发中如何在C#中进行图像颜色空间转换?
openwin_top
C#视觉应用开发问题系列c#开发语言计算机视觉视觉检测.net
microPythonPython最小内核源码解析NI-motion运动控制c语言示例代码解析python编程示例系列python编程示例系列二python的Web神器Streamlit如何应聘高薪职位在C#中进行图像颜色空间转换,通常涉及将图像从一种颜色空间转换到另一种颜色空间,例如从RGB转换到灰度、HSV或YUV等。为了实现这些转换,您可以使用多种库和技术,包括.NET自带的System.D
- QT开发技术【显示raw图像】
增援未来章北海
C++QT开发技术qt开发语言
一、思路读取raw文件,利用QImage显示*RAW文件**是数码相机或其他摄影设备中生成的未处理的图像数据文件,通常包含更多细节和信息,提供了更大的后期编辑空间。与标准的JPEG或PNG格式不同,RAW文件并不直接显示为图像,而是保留了相机传感器的原始数据,允许用户对图像进行更精细的处理和优化。需要固定像素二、代码演示intnPixelWidth=ui->spinBox_PixelWidth->
- 深度学习模型开发文档
Ares代码行者
深度学习
深度学习模型开发文档1.简介2.深度学习模型开发流程3.数据准备3.1数据加载3.2数据可视化4.构建卷积神经网络(CNN)5.模型训练5.1定义损失函数和优化器5.2训练过程6.模型评估与优化6.1模型评估6.2超参数调优7.模型部署8.总结参考资料1.简介深度学习是人工智能的一个分支,利用多层神经网络从数据中提取特征并进行学习。它被广泛应用于图像识别、自然语言处理、语音识别等领域。本文将以构建
- Python自动化运维:一键掌控服务器的高效之道
蒙娜丽宁
Python杂谈运维python自动化
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界在互联网和云计算高速发展的今天,服务器数量的指数增长使得手动运维和管理变得异常繁琐。Python凭借其强大的可读性和丰富的生态系统,成为实现自动化运维的理想语言。本文以“Python自动化运维:编写自动化脚本进行服务器管理”为主题,深入探讨了如何利用Py
- opencv c++ 调用 cornerHarris函数一直报错OpenCV(4.5.5) Error: Assertion failed (src.type() == CV_8UC1 || src.
Wsyoneself
cvopencv
报错:OpenCV(4.5.5)Error:Assertionfailed(src.type()==CV_8UC1||src.type()==CV_32FC1)in。。。原因:该函数的源矩阵(第一个参数)必须是单通道图像解决:三通道转为单通道之后再调用cvtColor(src,sc_img,COLOR_RGB2GRAY);//将三通道转为单通道cornerHarris(sc_img,dst,2,3
- conv2former模型详解及代码复现
清风AI
深度学习算法详解及代码复现深度学习人工智能python神经网络conda
模型背景在Conv2Former模型提出之前,视觉识别领域的研究主要集中在两个方向:传统卷积神经网络(ConvNets)新兴的视觉Transformer(ViTs)ConvNets通过堆叠基本模块和采用金字塔结构取得了显著进展,但往往忽略了全局上下文信息的显式建模。ViTs则通过自注意力机制有效捕捉全局依赖关系,在多个视觉任务中展现出优异性能。然而,ViTs在处理高分辨率图像时面临计算成本过高的问
- 昇腾910-PyTorch 实现 GoogleNet图像分类
深度学习图像识别
PyTorch实现GoogleNet用于图像分类本实验主要介绍了如何在昇腾上,使用pytorch对经典的GoogleNet模型在公开的CIFAR10数据集进行分类训练的实战讲解。内容包括GoogleNet模型创新点介绍、GoogleNet网络架构剖析与GoogleNet网络模型代码实战分析等等。本实验的目录结构安排如下所示:GoogleNet网络模型创新点介绍GoogleNet的网络架构剖析Goo
- 文档图像矫正任务的前沿进展:引入Transformer框架、极坐标的思路
在《文档数字化采集与智能处理:图像弯曲矫正技术概述》一文中,我们介绍了文档图像矫正技术的发展沿革与代表性方案。随着文档智能处理的需求逐步升级,文档图像去畸变技术也在不断探索新的可能性。今天,我们将讨论近年来文档图像矫正任务的前沿进展,分享一些我们正在关注的方向,欢迎与我们共同探讨、交流进步。Transformer架构下的文档矫正探索代表性工作DocTr:DocumentImageTransform
- 【多模态 AI】从跨模态学习到生成革命:文本、图像与音频的深度交融
网罗开发
人工智能AI大模型机器学习人工智能AIGC
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出