- 【每日德语】Ich lese gerne Bücher 我喜欢读书
Ash Butterfield
德语学习计划学习方法
第4天:基础日常用语单词学习:WasistdeinBeruf?—你是什么职业?音标:[vasɪstdaɪnbəˈʁuːf]IchbinStudent.—我是学生。音标:[ɪçbɪnʃtuˈdɛnt]Wiealtbistdu?—你多大了?音标:[viːaltbɪstduː]Ichbin27Jahrealt.—我27岁。音标:[ɪçbɪnˈzvaɪ̯ʏnt͡sɪçˈjaːʁəalt]KönntenSi
- 使用python开发flsak_FlaskWeb开发:基于Python的Web应用开发实战
RoseofVersailles
使用python开发flsak
本书不仅适合初级Web开发人员学习阅读,更是Python程序员用来学习高级Web开发技术的优秀参考书。•学习Flask应用的基本结构,编写示例应用;•使用必备的组件,包括模板、数据库、Web表单和电子邮件支持;•使用包和模块构建可伸缩的大型应用;•实现用户认证、角色和个人资料;•在博客网站中重用模板、分页显示列表以及使用富文本;•使用基于Flask的REST式API,在智能手机、平板电脑和其他第三
- 人工智能的发展领域之GPU加速计算的应用概述、架构介绍与教学过程
m0_74824592
面试学习路线阿里巴巴人工智能架构
文章目录一、架构介绍GPU算力平台概述优势与特点二、注册与登录账号注册流程GPU服务器类型配置选择指南内存和存储容量网络带宽CPU配置三、创建实例实例创建步骤镜像选择与设置四、连接实例SSH连接方法远程桌面配置一、架构介绍GPU算力平台概述一个专注于GPU加速计算的专业云服务平台,隶属于软件和信息技术服务业。主要面向高校、科研机构和企业用户。该平台提供多种NVIDIAGPU选择,适用于机器学习、人
- 2025最新版二级域名分发最新开心版 支持易支付接口和聚合登录接口
专业软件系统开发
源码下载付费域名分发域名分发系统源码
内容目录一、详细介绍宝塔面板环境PHP版本8.0至8.3PHP扩展SG15Mysql5.6或5.71Panel环境二、效果展示1.部分代码2.效果图展示请添加图片描述![请添加图片描述](https://i-blog.csdnimg.cn/direct/d4d7fc61d2e8483e92b2a828c0cb27b2.png)三、学习资料下载一、详细介绍一站式对域名进行二级分发,自助添加,自助修改
- 解决Mybatis-plus与springboot3.0+、spring6.0+的兼容性问题
lian潋湄
mybatis
根据mybatis-plus学习框架时,一直都会报错如下信息:当时并不知道这几个工具之间存在版本兼容性问题,就一直苦于找不到合适的解决方法,于是便上网开始了疯狂的搜索,发现改了好多地方还是不行。偶然间了解到了工具之间版本是存在兼容性问题的,一开始问ChatGPT也并没有给出正确的回答,于是我去了最最权威的官网查看,终于发现了问题所在:mybatis-plus官网给出的mybatis-plus插件依
- MIPI转换芯片、ICN6211、ICN6202、MIPI转RGB、MiPI转LVDS、分辨率最高1080P、MIPI转双路LVDS
17633853662
视频编解码音视频实时音视频桥接模式
MIPI转换芯片、ICN6211、ICN6202、MIPI转RGB、MiPI转LVDS、分辨率最高1080P、MIPI转双路LVDS1:ICN6211是一颗MIPI转RGB的桥接芯片如下图2:ICN6202是一颗MIPI转LVDS的桥接芯片如下图这两颗芯片主要应用在:手机、平板、老年机、车机等产品上。可以用在MTK、高通、RK、全志、英特尔等芯片上。发布的这两颗视频转换的芯片希望大家可以学习一下,
- 机器学习 - 学习线性模型的重要性
谦亨有终
跟着AI向前走机器学习学习人工智能
在接下来的博文中,我们将重点学习线性模型的回归模型和分类模型,在学习之前,让我们来了解一下学习线性模型的重要性,以及如何入门学习。一、作为初学者如何学习线性模型?作为初学者,要高效学习机器学习以及其中的线性模型,可以遵循以下几个步骤和建议:(一)、机器学习的整体学习策略打好数学基础线性代数:理解向量、矩阵、线性变换等,这些是理解模型表示(如y=w^Tx+b)和算法优化的基础。微积分:掌握导数、梯度
- 【深度学习】计算机视觉(CV)-图像分类-ResNet(Residual Network,残差网络)
IT古董
深度学习人工智能深度学习计算机视觉分类
ResNet(ResidualNetwork,残差网络)是一种深度卷积神经网络(CNN)架构,由何恺明(KaimingHe)等人在2015年提出,最初用于ImageNet竞赛,并在分类任务上取得了冠军。ResNet的核心思想是残差学习(ResidualLearning),它通过跳跃连接(SkipConnections)解决了深度神经网络训练中的梯度消失和梯度爆炸问题,使得非常深的网络(如50层、1
- 【深度学习基础】什么是注意力机制
我的青春不太冷
深度学习人工智能注意力机制
文章目录一、注意力机制的核心地位:从补充到主导二、技术突破:从Transformer到多模态融合三、跨领域应用:从NLP到通用人工智能四、未来挑战与趋势结语参考链接注意力机制:深度学习的核心革命与未来基石在深度学习的发展历程中,注意力机制(AttentionMechanism)的引入堪称一场革命。它不仅解决了传统模型的根本性缺陷,更通过动态聚焦关键信息的能力,重塑了人工智能处理复杂任务的范式。本文
- 【机器学习】多元线性回归
T0uken
Python全栈开发1024程序员节机器学习算法线性回归
在实际应用中,许多问题都包含多个特征(输入变量),而不仅仅是单个输入变量。多元线性回归是线性回归的扩展,它能够处理多个输入特征并建立它们与目标变量的线性关系。本教程将系统性推演多元线性回归,包括向量化处理、特征放缩、梯度下降的收敛性和学习率选择等,并使用numpy实现。最后,我们会通过sklearn快速实现多元线性回归模型。多元线性回归模型简介多元线性回归的模型公式为:y=X⋅w+by=X\cdo
- 【第15章:量子深度学习与未来趋势—15.3 量子深度学习在图像处理、自然语言处理等领域的应用潜力分析】
再见孙悟空_
#【深度学习・探索智能核心奥秘】深度学习机器学习人工智能音视频自然语言处理量子深度学习量子学习未来
一、开篇:为什么我们需要关注这场"量子+AI"的世纪联姻?各位技术爱好者们,今天我们要聊的这个话题,可能是未来十年最值得押注的技术革命——量子深度学习。这不是简单的"1+1=2"的物理叠加,而是一场可能彻底改写AI发展轨迹的范式转移。想象这样一个场景:你现在训练一个GPT-5级别的模型,不需要耗费价值上亿美元的算力资源,不需要等待数周的训练时间,甚至不需要纠结于模型参数是否过拟合。这就是量子深度学
- 【第15章:量子深度学习与未来趋势—15.1 量子计算基础与量子机器学习的发展背景】
再见孙悟空_
#【深度学习・探索智能核心奥秘】机器翻译自然语言处理计算机视觉量子计算人工智能深度学习机器学习
想象一下,你正在用ChatGPT生成一篇小说,突然它卡在"主角穿越虫洞"的情节上——这不是因为想象力枯竭,而是传统计算机的晶体管已经烧到冒烟。当前AI大模型的参数规模每4个月翻一番,但摩尔定律的终结让经典计算机的算力增长首次跟不上AI的进化速度。这时候,量子计算带着它的"超能力"登场了:1台50量子位的量子计算机,处理某些问题的速度可达超级计算机的1亿倍。这场算力革命,正在改写深度学习的游戏规则。
- ch02离散仿真引擎基础——Unity3D学习
yesor_not
3D游戏学习c#unity游戏游戏策划
ch02离散仿真引擎基础——Unity3D学习一、简答题1.解释游戏对象(GameObjects)和资源(Assets)的区别与联系游戏对象(GameObjects):一般为玩家,敌人,环境等资源(Assets):一般包括声音,脚本,材质等区别与联系:对象一般是一些资源的集合体资源可以被多个对象使用资源作为模版,可实例化游戏中具体的对象。2、下载几个游戏案例,分别总结资源、对象组织的结构(指资源的
- Python学习教程:必须掌握的Cookie知识点都在这里了
weixin_30387339
python爬虫javascriptViewUI
今天我们来全面了解一下Cookie(小饼干)相关的知识!篇幅有点长,在学习Python的伙伴或者有兴趣的你,可以耐心看哦!相信很多同学肯定听过Cookie这个东西,也大概了解其作用,但是其原理以及如何设置,可能没有做过web的同学并不是非常清楚,以前的Python学习教程中其实有跟大家提到过,那今天就带大家详细了解下Cookie相关的知识!一、诞生背景爬虫系列教程的第一篇:HTTP详解中我们便说过
- 常见数据结构的简介(基本概念 & 操作 & 时间复杂度)
子诚之
编程
文章目录0.概览1.线性表、栈和队列2.数组2.1基本操作1)时间复杂度2)案例3.字符串3.1存储结构3.2基本操作1)时间复杂度2)案例:最大公共字符串4.二叉树4.1储存结构4.2基本操作1)时间复杂度2)案例:使用字典树判断字符串是否存在5.哈希/散列表5.1哈希函数5.2基本操作1)时间复杂度2)案例:构建哈希表《重学数据结构与算法》学习笔记0.概览数据结构增删查特点线性表变长栈队列数组
- Python学习,cookie和session
sehun_sx
python数据挖掘开发语言python学习学习
用户登录,未登录不能访问指定页面基于cookie实现保存在用户浏览器端的键值对,向服务端发请求时会自动携带deflogin(request):#设置cookiedata=redirect('...')data.set_cookie()#读取cookierequest.COOKIES.get('xx')returndatacookie的三个参数:key,value='',max_age=None应用
- Python学习之cookies及session用法
一个人旅行*-*
PythonPythoncookiessession
当想利用Python在网页上发表评论的时候,需要一些账号密码登录的信息,这个时候用requests.get()请求的话,账号密码全部会显示在网址上,这显然不科学!这个时候需要用post请求,可以这么理解,get是明文显示,post是非明文显示。通常,get请求会应用于获取网页数据,比如我们之前学的requests.get()。post请求则应用于向网页提交数据,比如提交表单类型数据(像账号密码就是
- 基于深度学习YOLOv10的PCB板缺陷检测系统(附完整资源+PySide6界面+训练代码)
人工智能_SYBH
深度学习YOLO人工智能目标检测python
引言:在现代制造业中,电子元件和PCB(印刷电路板)是非常重要的基础设施。PCB缺陷检测是生产过程中至关重要的一步。传统的缺陷检测方法主要依靠人工检查,这不仅效率低,而且容易受到人眼疲劳的影响。随着深度学习技术的不断发展,基于深度学习的自动化缺陷检测已成为研究的热点,尤其是在计算机视觉领域。YOLO(YouOnlyLookOnce)系列算法凭借其高速和高精度的优势,成为了目标检测领域的佼佼者。本文
- 【蓝桥杯C/C++】彻底理解双指针算法
不会喷火的小火龙
#蓝桥杯算法与数据结构算法数据结构c++
目录学习目标什么是双指针?双指针的分类核心思想模板写法经典例题移除元素双指针法分析题意具体代码最长连续不重复子序列输入格式输出格式数据范围输入样例:输出样例:核心思路数组元素的目标和输入格式输出格式数据范围输入样例:输出样例:核心思路总结一下学习目标了解双指针算法是什么以及分类理解双指针算法的原理会用代码编写双指针算法在实际题目中灵活运用双指针在数组的开章中我们提到了这个算法,如果没有看的话可以学
- 本地部署model scope魔搭大模型流程
CQller
python算法深度学习机器学习jupyterpytorch
一、安装python二、安装Gradio三、添加镜像加速四、运行字符串倒叙五、运行绘图六、安装常用软件包和库七、我目前使用的软件包和库简介八、文字生成图片AI模型九、文字回复AI模型一、安装python可参考安装步骤:python学习笔记-python安装与环境变量配置_python环境变量-CSDN博客二、安装Gradio在cmd执行以下命令。Gradio封装了功能丰富的前端用户界面,一会儿用来
- 清华发布:DeepSeek学习教程ppt 104页完整版免费分享
2501_90649720
人工智能学习
最近国产DeepSeek火出圈,其出色的性能和巨大的潜力引得各路资本巨头蜂蛹而入,纷纷与其合作。红遍世界。在DeepSeek火遍世界时,清华大学的博士后团队默默出品了一份名为《DeepSeek:从入门到精通》的ai教学课程。课程一经发布,就引得各个自媒体ai博主的疯传,一度冲上热搜。我专门去看了一下这个教程,确实够硬,够专业,够全面!完整版教程资源我已经帮大家整理好放下面了,大家自行领取。资源链接
- html5游戏引擎-Pharse.js学习笔记(一)
18520195858
游戏javascriptc/c++ViewUI
1.前言前几天随着flappybird这样的小游戏的火爆,使我这种也曾了解过html5技术的js业余爱好者也开始关注游戏开发。研究过两个个比较成熟的html5游戏引擎,感觉用引擎还是要方便一些。所以决定从今天正式开始研究html5游戏引擎,并且将从看官网demo的学习整理成博客和大家一起分享。我了解过cocos-2dforhtml5和phaser.js这两个引擎,其中前者比较复杂,对于有过coco
- 【深度解析】ICLR:人工智能领域的顶级学术会议 | 顶会与SCI期刊的区别全攻略
X_taiyang18
人工智能
【深度解析】ICLR:人工智能领域的顶级学术会议|顶会与SCI期刊的区别全攻略简介在人工智能和机器学习领域,ICLR(InternationalConferenceonLearningRepresentations)被誉为“深度学习的顶级会议”。自2013年由深度学习三巨头中的YoshuaBengio和YannLeCun创办以来,ICLR迅速崛起,成为全球科研人员争相投稿的学术盛会。那么,ICLR
- 30.4:Python如何安装Pandas库? (课程共4100字)
小兔子平安
Python完整学习全解答pythonpandas开发语言
课程概述(课程共4100字)①安装Pandas库打开命令提示符或终端窗口,输入以下命令来安装Pandas:当安装完成后,可以使用以下命令来验证Pandas是否已正确安装:②数据处理和分析读写数据数据清洗和预处理数据分组和聚合数据可视化③Python学习的深入讨论Python的应用领域Python的优点和缺点学习Python的建议学习Python的挑战课程总结课程概述Python是一种功能强大的编程
- linux es后台启动命令,小白学ES 02-Linux中部署Elasticsearch单机服务
热带汽水
linuxes后台启动命令
目录@此部署过程以Elasticsearch-5.6.10版本为例,后续的学习和演示也用此版本.1前提:安装JDK学习使用ES的前提是成功安装JDK——很基础的一项步骤,这里省略.此处学习演示所用的JDK版本为:[root@host-10-0-20-50~]#java-versionjavaversion"1.8.0_151"Java(TM)SERuntimeEnvironment(build1.
- 使用多模态大语言模型进行深度学习的图像、文本和语音数据增强
数行天下
人工智能语言模型深度学习人工智能自然语言处理
在过去的五年里,研究方向已从传统的机器学习(ML)和深度学习(DL)方法转向利用大语言模型(LLMs),包括多模态方法,用于数据增强,以提高泛化能力,并在训练深度卷积神经网络时防止过拟合。然而,现有的综述文章主要集中于机器学习和深度学习技术或有限的模态(如文本或图像),在涵盖LLM方法的最新进展和多模态应用方面仍存在空白。本文通过探索利用多模态LLMs进行图像、文本和语音数据增强的最新文献,填补了
- IDEA接入GPT王炸秘籍,开发分析界面与ChatGPT直接无缝衔接
数行天下
AI赋能intellij-ideagptchatgptpythonjava
大家好,我是数行天下,普通中间群体是凭借技术或业务在各行各业打工的重要群体,是AI技术的实践和推动者,个体的数字化程度越高就越能在百年未有之变局的AI时代赢得先机。各行各业数据分析、系统开发人员,科研领域研究人员,设计师,及各单位文字工作者等,谁能快速学习、加快效率,产出的内容更优质,在内卷化日益严重的环境中就更有竞争力。由于各种限制,大部分人无法有效使用GPT,即使费力注册成功也因为科学上网时间
- 了解SQL Server不同版本(如Express、Standard、Enterprise)的功能差异和适用场景。
web15117360223
面试学习路线阿里巴巴express大数据数据库
一、SQLServerExpress版本(一)功能特点数据库大小限制:SQLServerExpress版本数据库的最大大小限制为10GB。这对于小型应用程序、个人项目或者初学者学习和开发简单的数据库应用是足够的。例如,一个小型的学生成绩管理系统,用于记录班级学生的成绩、课程信息等,其数据量通常不会超过这个限制。资源使用限制:该版本使用的内存限制为1GB,处理器核心数也有限制。这使得它在资源占用方面
- LLM 大模型学习必知必会系列(一):大模型基础知识篇
汀、人工智能
LLM技术汇总人工智能自然语言处理promptRAGLLM模型训练模型部署
LLM大模型学习必知必会系列(一):大模型基础知识篇魔搭ModelScope开源的LLM模型魔搭ModelScope欢迎各个开源的LLM模型在社区上做开源分享。目前社区上已经承载了来自各个机构贡献的不同系列的LLM模型。并且社区的开发者也在这些模型的基础上,贡献了许多创新应用,并在ModelScope的创空间上进行分享。本专题初步梳理了当前社区上一些典型的LLM以及对应的创空间应用,方便大家对于L
- 《深入浅出LLM基础篇》(三):大模型结构分类
GoAI
深入浅出LLM深入浅出AI自然语言处理NLP大模型LLM人工智能transformerchatgpt
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理