当前,数字化在给企业带来业务创新,推动企业高速发展的同时,也给企业的IT软件系统带来了严峻的挑战。面对流量高峰,不同的企业是如何通过技术手段解决高并发难题的呢?
软件系统有三个追求:高性能、高并发、高可用,俗称三高。三者既有区别也有联系,门门道道很多,全面讨论需要三天三夜,本篇讨论高并发。
高并发(High Concurrency)。并发是操作系统领域的一个概念,指的是一段时间内多任务流交替执行的现象,后来这个概念被泛化,高并发用来指大流量、高请求的业务情景,比如春运抢票,电商双十一,秒杀大促等场景。
很多程序员每天忙着搬砖,平时接触不到高并发,哪天受不了跑去面试,还常常会被面试官犀利的高并发问题直接KO,其实吧,高并发系统也不高深,我保证任何一个智商在线的看过这篇文章后,都能战胜恐惧,重拾生活的信心。
本文先介绍高并发系统的度量指标,然后讲述高并发系统的设计思路,再梳理高并发的关键技术,最后结合作者的经验做一些延伸探讨。
既然是高并发系统,那并发一定要高,不然就名不副实。并发的指标一般有QPS、TPS、IOPS,这几个指标都是可归为系统吞吐率,QPS越高系统能hold住的请求数越多,但光关注这几个指标不够,我们还需要关注RT,即响应时间,也就是从发出request到收到response的时延,这个指标跟吞吐往往是此消彼长的,我们追求的是一定时延下的高吞吐。
比如有100万次请求,99万次请求都在10毫秒内响应,其他次数10秒才响应,平均时延不高,但时延高的用户受不了,所以,就有了TP90/TP99指标,这个指标不是求平均,而是把时延从小到大排序,取排名90%/99%的时延,这个指标越大,对慢请求越敏感。
除此之外,有时候,我们也会关注可用性指标,这可归到稳定性。
一般而言,用户感知友好的高并发系统,时延应该控制在250毫秒以内。
什么样的系统才能称为高并发?这个不好回答,因为它取决于系统或者业务的类型。不过我可以告诉你一些众所周知的指标,这样能帮助你下次在跟人扯淡的时候稍微靠点儿谱,不至于贻笑大方。
通常,数据库单机每秒也就能抗住几千这个量级,而做逻辑处理的服务单台每秒抗几万、甚至几十万都有可能,而消息队列等中间件单机每秒处理个几万没问题,所以我们经常听到每秒处理数百万、数千万的消息中间件集群,而像阿某的API网关,每日百亿请求也有可能。
高并发的设计思路有两个方向:
垂直方向:提升单机能力
提升单机处理能力又可分为硬件和软件两个方面:
水平方向:分布式集群
为了解决分布式系统的复杂性问题,一般会用到架构分层和服务拆分,通过分层做隔离,通过微服务解耦。
这个理论上没有上限,只要做好层次和服务划分,加机器扩容就能满足需求,但实际上并非如此,一方面分布式会增加系统复杂性,另一方面集群规模上去之后,也会引入一堆AIOps、服务发现、服务治理的新问题。
因为垂直向的限制,所以,我们通常更关注水平扩展,高并发系统的实施也主要围绕水平方向展开。
玩具式的网络服务程序,用户可以直连服务器,甚至不需要数据库,直接写磁盘文件。但春运购票系统显然不能这么做,它肯定扛不住这个压力,那一般的高并发系统是怎么做呢?比如某宝这样的正经系统是怎么处理高并发的呢?
其实大的思路都差不多,层次划分 + 功能划分。可以把层次划分理解为水平方向的划分,而功能划分理解为垂直方向的划分。
首先,用户不能直连服务器,要做分布式就要解决“分”的问题,有多个服务实例就需要做负载均衡,有不同服务类型就需要服务发现。
集群化:负载均衡
负载均衡就是把负载(request)均衡分配到不同的服务实例,利用集群的能力去对抗高并发,负载均衡是服务集群化的实施要素,它分3种:
所以,完整的负载均衡链路是 client <-> DNS负载均衡 -> F5 -> LVS/SLB -> NGINX
不管选择哪种LB策略,或者组合LB策略,逻辑上,我们都可以视为负载均衡层,通过添加负载均衡层,我们将负载均匀分散到了后面的服务集群,具备基础的高并发能力,但这只是万里长征第一步。
数据库层面:分库分表+读写分离
前面通过负载均衡解决了无状态服务的水平扩展问题,但我们的系统不全是无状态的,后面通常还有有状态的数据库,所以解决了前面的问题,存储有可能成为系统的瓶颈,我们需要对有状态存储做分片路由。
数据库的单机QPS一般不高,也就几千,显然满足不了高并发的要求。
所以,我们需要做分库分表 + 读写分离。
就是把一个库分成多个库,部署在多个数据库服务上,主库承载写请求,从库承载读请求。从库可以挂载多个,因为很多场景写的请求远少于读的请求,这样就把对单个库的压力降下来了。
如果写的请求上升就继续分库分表,如果读的请求上升就挂更多的从库,但数据库天生不是很适合高并发,而且数据库对机器配置的要求一般很高,导致单位服务成本高,所以,这样加机器抗压力成本太高,还得另外想招。
读多写少:缓存
缓存的理论依据是局部性原理。
一般系统的写入请求远少于读请求,针对写少读多的场景,很适合引入缓存集群。
在写数据库的时候同时写一份数据到缓存集群里,然后用缓存集群来承载大部分的读请求,因为缓存集群很容易做到高性能,所以,这样的话,通过缓存集群,就可以用更少的机器资源承载更高的并发。
缓存的命中率一般能做到很高,而且速度很快,处理能力也强(单机很容易做到几万并发),是理想的解决方案。
CDN本质上就是缓存,被用户大量访问的静态资源缓存在CDN中是目前的通用做法。
缓存也有很多需要谨慎处理的问题:
但缓存是针对读,如果写的压力很大,怎么办?
高写入:消息中间件
同理,通过跟主库加机器,耗费的机器资源是很大的,这个就是数据库系统的特点所决定的。
相同的资源下,数据库系统太重太复杂,所以并发承载能力就在几千/s的量级,所以此时你需要引入别的一些技术。
比如说消息中间件技术,也就是MQ集群,它是非常好的做写请求异步化处理,实现削峰填谷的效果。
消息队列能做解耦,在只需要最终一致性的场景下,很适合用来配合做流控。
假如说,每秒是1万次写请求,其中比如5千次请求是必须请求过来立马写入数据库中的,但是另外5千次写请求是可以允许异步化等待个几十秒,甚至几分钟后才落入数据库内的。
那么此时完全可以引入消息中间件集群,把允许异步化的每秒5千次请求写入MQ,然后基于MQ做一个削峰填谷。比如就以平稳的1000/s的速度消费出来然后落入数据库中即可,此时就会大幅度降低数据库的写入压力。
业界有很多著名的消息中间件,比如ZeroMQ,rabbitMQ,kafka等。
消息队列本身也跟缓存系统一样,可以用很少的资源支撑很高的并发请求,用它来支撑部分允许异步化的高并发写入是很合适的,比使用数据库直接支撑那部分高并发请求要减少很多的机器使用量。
避免挤兑:流控
再强大的系统,也怕流量短事件内集中爆发,就像银行怕挤兑一样,所以,高并发另一个必不可少的模块就是流控。
流控的关键是流控算法,有4种常见的流控算法。
接入-逻辑-存储是经典的互联网后端分层,但随着业务规模的提高,逻辑层的复杂度也上升了,所以,针对逻辑层的架构设计也出现很多新的技术和思路,常见的做法包括系统拆分,微服务。
除此之外,也有很多业界的优秀实践,包括某信服务器通过协程(无侵入,已开源libco)改造,极大的提高了系统的并发度和稳定性,另外,缓存预热,预计算,批量读写(减少IO),池技术等也广泛应用在实践中,有效的提升了系统并发能力。
为了提升并发能力,逻辑后端对请求的处理,一般会用到生产者-消费者多线程模型,即I/O线程负责网络IO,协议编解码,网络字节流被解码后产生的协议对象,会被包装成task投入到task queue,然后worker线程会从该队列取出task执行,有些系统会用多进程而非多线程,通过共享存储,维护2个方向的shm queue,一个input q,一个output q,为了提高并发度,有时候会引入协程,协程是用户线程态的多执行流,它的切换成本更低,通常有更好的调度效率。
另外,构建漏斗型业务或者系统,从客户端请求到接入层,到逻辑层,到DB层,层层递减,过滤掉请求,Fail Fast(尽早发现尽早过滤),嘴大屁眼小,哈哈。
漏斗型系统不仅仅是一个技术模型,它也可以是一个产品思维,配合产品的用户分流,逻辑分离,可以构建全方位的立体模型。
莫让浮云遮望眼,除去繁华识真颜。我们不能掌握了大方案,吹完了牛皮,而忽视了编程最本质的东西,掌握最基本最核心的编程能力,比如数据架构和算法,设计,惯用法,培养技术的审美,也是很重要的,既要致高远,又要尽精微。