拿到一个简单好用的库,但是里面使用了以前不支持动态模板的做法,写了很多重复代码。我用动态模板改进了一下,减少代码量。
原代码地址:http://sigslot.sourceforge.net/
// sigslot.h: Signal/Slot classes
//
// Written by Sarah Thompson ([email protected]) 2002.
//
// License: Public domain. You are free to use this code however you like, with the proviso that
// the author takes on no responsibility or liability for any use.
//
// QUICK DOCUMENTATION
//
// (see also the full documentation at http://sigslot.sourceforge.net/)
//
// #define switches
// SIGSLOT_PURE_ISO - Define this to force ISO C++ compliance. This also disables
// all of the thread safety support on platforms where it is
// available.
//
// SIGSLOT_USE_POSIX_THREADS - Force use of Posix threads when using a C++ compiler other than
// gcc on a platform that supports Posix threads. (When using gcc,
// this is the default - use SIGSLOT_PURE_ISO to disable this if
// necessary)
//
// SIGSLOT_DEFAULT_MT_POLICY - Where thread support is enabled, this defaults to multi_threaded_global.
// Otherwise, the default is single_threaded. #define this yourself to
// override the default. In pure ISO mode, anything other than
// single_threaded will cause a compiler error.
//
// PLATFORM NOTES
//
// Win32 - On Win32, the WIN32 symbol must be #defined. Most mainstream
// compilers do this by default, but you may need to define it
// yourself if your build environment is less standard. This causes
// the Win32 thread support to be compiled in and used automatically.
//
// Unix/Linux/BSD, etc. - If you're using gcc, it is assumed that you have Posix threads
// available, so they are used automatically. You can override this
// (as under Windows) with the SIGSLOT_PURE_ISO switch. If you're using
// something other than gcc but still want to use Posix threads, you
// need to #define SIGSLOT_USE_POSIX_THREADS.
//
// ISO C++ - If none of the supported platforms are detected, or if
// SIGSLOT_PURE_ISO is defined, all multithreading support is turned off,
// along with any code that might cause a pure ISO C++ environment to
// complain. Before you ask, gcc -ansi -pedantic won't compile this
// library, but gcc -ansi is fine. Pedantic mode seems to throw a lot of
// errors that aren't really there. If you feel like investigating this,
// please contact the author.
//
//
// THREADING MODES
//
// single_threaded - Your program is assumed to be single threaded from the point of view
// of signal/slot usage (i.e. all objects using signals and slots are
// created and destroyed from a single thread). Behaviour if objects are
// destroyed concurrently is undefined (i.e. you'll get the occasional
// segmentation fault/memory exception).
//
// multi_threaded_global - Your program is assumed to be multi threaded. Objects using signals and
// slots can be safely created and destroyed from any thread, even when
// connections exist. In multi_threaded_global mode, this is achieved by a
// single global mutex (actually a critical section on Windows because they
// are faster). This option uses less OS resources, but results in more
// opportunities for contention, possibly resulting in more context switches
// than are strictly necessary.
//
// multi_threaded_local - Behaviour in this mode is essentially the same as multi_threaded_global,
// except that each signal, and each object that inherits has_slots, all
// have their own mutex/critical section. In practice, this means that
// mutex collisions (and hence context switches) only happen if they are
// absolutely essential. However, on some platforms, creating a lot of
// mutexes can slow down the whole OS, so use this option with care.
//
// USING THE LIBRARY
//
// See the full documentation at http://sigslot.sourceforge.net/
//
//
#ifndef SIGSLOT_H__
#define SIGSLOT_H__
#include
#include
#if defined(SIGSLOT_PURE_ISO) || (!defined(WIN32) && !defined(__GNUG__) && !defined(SIGSLOT_USE_POSIX_THREADS))
# define _SIGSLOT_SINGLE_THREADED
#elif defined(WIN32)
# define _SIGSLOT_HAS_WIN32_THREADS
# include
#elif defined(__GNUG__) || defined(SIGSLOT_USE_POSIX_THREADS)
# define _SIGSLOT_HAS_POSIX_THREADS
# include
#else
# define _SIGSLOT_SINGLE_THREADED
#endif
#ifndef SIGSLOT_DEFAULT_MT_POLICY
# ifdef _SIGSLOT_SINGLE_THREADED
# define SIGSLOT_DEFAULT_MT_POLICY single_threaded
# else
# define SIGSLOT_DEFAULT_MT_POLICY multi_threaded_local
# endif
#endif
namespace sigslot {
class single_threaded
{
public:
single_threaded()
{
;
}
virtual ~single_threaded()
{
;
}
virtual void lock()
{
;
}
virtual void unlock()
{
;
}
};
#ifdef _SIGSLOT_HAS_WIN32_THREADS
// The multi threading policies only get compiled in if they are enabled.
class multi_threaded_global
{
public:
multi_threaded_global()
{
static bool isinitialised = false;
if(!isinitialised)
{
InitializeCriticalSection(get_critsec());
isinitialised = true;
}
}
multi_threaded_global(const multi_threaded_global&)
{
;
}
virtual ~multi_threaded_global()
{
;
}
virtual void lock()
{
EnterCriticalSection(get_critsec());
}
virtual void unlock()
{
LeaveCriticalSection(get_critsec());
}
private:
CRITICAL_SECTION* get_critsec()
{
static CRITICAL_SECTION g_critsec;
return &g_critsec;
}
};
class multi_threaded_local
{
public:
multi_threaded_local()
{
InitializeCriticalSection(&m_critsec);
}
multi_threaded_local(const multi_threaded_local&)
{
InitializeCriticalSection(&m_critsec);
}
virtual ~multi_threaded_local()
{
DeleteCriticalSection(&m_critsec);
}
virtual void lock()
{
EnterCriticalSection(&m_critsec);
}
virtual void unlock()
{
LeaveCriticalSection(&m_critsec);
}
private:
CRITICAL_SECTION m_critsec;
};
#endif // _SIGSLOT_HAS_WIN32_THREADS
#ifdef _SIGSLOT_HAS_POSIX_THREADS
// The multi threading policies only get compiled in if they are enabled.
class multi_threaded_global
{
public:
multi_threaded_global()
{
pthread_mutex_init(get_mutex(), NULL);
}
multi_threaded_global(const multi_threaded_global&)
{
;
}
virtual ~multi_threaded_global()
{
;
}
virtual void lock()
{
pthread_mutex_lock(get_mutex());
}
virtual void unlock()
{
pthread_mutex_unlock(get_mutex());
}
private:
pthread_mutex_t* get_mutex()
{
static pthread_mutex_t g_mutex;
return &g_mutex;
}
};
class multi_threaded_local
{
public:
multi_threaded_local()
{
pthread_mutex_init(&m_mutex, NULL);
}
multi_threaded_local(const multi_threaded_local&)
{
pthread_mutex_init(&m_mutex, NULL);
}
virtual ~multi_threaded_local()
{
pthread_mutex_destroy(&m_mutex);
}
virtual void lock()
{
pthread_mutex_lock(&m_mutex);
}
virtual void unlock()
{
pthread_mutex_unlock(&m_mutex);
}
private:
pthread_mutex_t m_mutex;
};
#endif // _SIGSLOT_HAS_POSIX_THREADS
template
class lock_block
{
public:
mt_policy *m_mutex;
lock_block(mt_policy *mtx)
: m_mutex(mtx)
{
m_mutex->lock();
}
~lock_block()
{
m_mutex->unlock();
}
};
template
class has_slots;
template
class _connection_base_normal
{
public:
virtual has_slots* getdest() const = 0;
virtual void emit(Args...) = 0;
virtual _connection_base_normal* clone() = 0;
virtual _connection_base_normal* duplicate(has_slots* pnewdest) = 0;
};
template
class _signal_base : public mt_policy
{
public:
virtual void slot_disconnect(has_slots* pslot) = 0;
virtual void slot_duplicate(const has_slots* poldslot, has_slots* pnewslot) = 0;
};
template
class has_slots : public mt_policy
{
private:
typedef std::set<_signal_base*> sender_set;
typedef typename sender_set::const_iterator set_const_iterator;
public:
has_slots()
{
;
}
has_slots(const has_slots& hs)
: mt_policy(hs)
{
lock_block lock(this);
set_const_iterator it = hs.m_senders.begin();
set_const_iterator itEnd = hs.m_senders.end();
while(it != itEnd)
{
(*it)->slot_duplicate(&hs, this);
m_senders.insert(*it);
++it;
}
}
void signal_connect(_signal_base* sender)
{
lock_block lock(this);
m_senders.insert(sender);
}
void signal_disconnect(_signal_base* sender)
{
lock_block lock(this);
m_senders.erase(sender);
}
virtual ~has_slots()
{
disconnect_all();
}
void disconnect_all()
{
lock_block lock(this);
auto it = m_senders.begin();
auto itEnd = m_senders.end();
while(it != itEnd)
{
(*it)->slot_disconnect(this);
++it;
}
m_senders.erase(m_senders.begin(), m_senders.end());
}
private:
sender_set m_senders;
};
template
class _signal_base_normal : public _signal_base
{
public:
typedef std::list<_connection_base_normal *> connections_list;
_signal_base_normal()
{
;
}
_signal_base_normal(const _signal_base_normal& s)
: _signal_base(s)
{
lock_block lock(this);
connections_list::const_iterator it = s.m_connected_slots.begin();
connections_list::const_iterator itEnd = s.m_connected_slots.end();
while(it != itEnd)
{
(*it)->getdest()->signal_connect(this);
m_connected_slots.push_back((*it)->clone());
++it;
}
}
void slot_duplicate(const has_slots* oldtarget, has_slots* newtarget)
{
lock_block lock(this);
connections_list::iterator it = m_connected_slots.begin();
connections_list::iterator itEnd = m_connected_slots.end();
while(it != itEnd)
{
if((*it)->getdest() == oldtarget)
{
m_connected_slots.push_back((*it)->duplicate(newtarget));
}
++it;
}
}
~_signal_base_normal()
{
disconnect_all();
}
void disconnect_all()
{
lock_block lock(this);
connections_list::const_iterator it = m_connected_slots.begin();
connections_list::const_iterator itEnd = m_connected_slots.end();
while(it != itEnd)
{
(*it)->getdest()->signal_disconnect(this);
delete *it;
++it;
}
m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
}
void disconnect(has_slots* pclass)
{
lock_block lock(this);
connections_list::iterator it = m_connected_slots.begin();
connections_list::iterator itEnd = m_connected_slots.end();
while(it != itEnd)
{
if((*it)->getdest() == pclass)
{
delete *it;
m_connected_slots.erase(it);
pclass->signal_disconnect(this);
return;
}
++it;
}
}
void slot_disconnect(has_slots* pslot)
{
lock_block lock(this);
connections_list::iterator it = m_connected_slots.begin();
connections_list::iterator itEnd = m_connected_slots.end();
while(it != itEnd)
{
connections_list::iterator itNext = it;
++itNext;
if((*it)->getdest() == pslot)
{
m_connected_slots.erase(it);
// delete *it;
}
it = itNext;
}
}
protected:
connections_list m_connected_slots;
};
template
class _connection_normal : public _connection_base_normal
{
public:
_connection_normal()
{
pobject = NULL;
pmemfun = NULL;
}
_connection_normal(dest_type* pobject, void (dest_type::*pmemfun)(Args...))
{
m_pobject = pobject;
m_pmemfun = pmemfun;
}
virtual _connection_base_normal* clone()
{
return new _connection_normal(*this);
}
virtual _connection_base_normal* duplicate(has_slots* pnewdest)
{
return new _connection_normal((dest_type *)pnewdest, m_pmemfun);
}
virtual void emit(Args... args)
{
(m_pobject->*m_pmemfun)(args...);
}
virtual has_slots* getdest() const
{
return m_pobject;
}
private:
dest_type* m_pobject;
void (dest_type::* m_pmemfun)(Args...);
};
template
class signal_normal : public _signal_base_normal
{
public:
signal_normal()
{
;
}
signal_normal(const signal_normal& s)
: _signal_base_normal(s)
{
;
}
template
void connect(desttype* pclass, void (desttype::*pmemfun)(Args...))
{
lock_block lock(this);
_connection_normal* conn =
new _connection_normal(pclass, pmemfun);
m_connected_slots.push_back(conn);
pclass->signal_connect(this);
}
void emit(Args...args)
{
lock_block lock(this);
auto itNext = m_connected_slots.begin();
auto it = itNext;
auto itEnd = m_connected_slots.end();
while(it != itEnd)
{
itNext = it;
++itNext;
(*it)->emit(args...);
it = itNext;
}
}
void operator()(Args ...)
{
lock_block lock(this);
connections_list::const_iterator itNext, it = m_connected_slots.begin();
connections_list::const_iterator itEnd = m_connected_slots.end();
while(it != itEnd)
{
itNext = it;
++itNext;
(*it)->emit(Args...);
it = itNext;
}
}
};
template
class signal_defalut : public signal_normal
{
};
}; // namespace sigslot
#endif // SIGSLOT_H__