- yolov5>onnx>ncnn>apk
图像处理大大大大大牛啊
opencv实战代码讲解yoloonnxncnn安卓
一.yolov5pt模型转onnx条件:colabnotebookyolov51.安装环境!pipinstallonnx>=1.7.0#forONNXexport!pipinstallcoremltools==4.0#forCoreMLexport!pipinstallonnx-simplifier2.修改common.py在classFocus下面
- 【深度学习】【OnnxRuntime】【Python】模型转化、环境搭建以及模型部署的详细教程
牙牙要健康
深度学习onnxonnxruntime深度学习python人工智能
【深度学习】【OnnxRuntime】【Python】模型转化、环境搭建以及模型部署的详细教程提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论文章目录【深度学习】【OnnxRuntime】【Python】模型转化、环境搭建以及模型部署的详细教程前言模型转换--pytorch转onnxWindows平台搭建依赖环境onnxruntime调用onnx模型ONNXRuntime推理核
- TensorRT模型量化实践
痛&快乐着
深度学习TensorRTc++深度学习
文章目录量化基本概念量化的方法方式1:trtexec(PTQ的一种)方式2:PTQ2.1pythononnx转trt2.2polygraphy工具:应该是对2.1量化过程的封装方式3:QAT(追求精度时推荐)使用TensorRT量化实践(C++版)使用TensorRT量化(python版)参考文献量化基本概念后训练量化PostTrainingQuantization(PTQ)量化过程仅仅通过离线推
- 【环境搭建:onnx模型部署】onnxruntime-gpu安装与测试(python)(1)
2401_83703835
程序员python深度学习pytorch
cuda==10.2cudnn==8.0.3onnxruntime-gpu==1.5.0or1.6.0pipinstallonnxruntime-gpu==1.6.0###2.2方法二:onnxruntime-gpu不依赖于本地主机上cuda和cudnn在conda环境中安装,不依赖于本地主机上已安装的cuda和cudnn版本,灵活方便。这里,先说一下已经测试通过的组合:*python3.6,cu
- 使用TensorRT对YOLOv8模型进行加速推理
fengbingchun
DeepLearningCUDA/TensorRTYOLOv8TensorRT
这里使用GitHub上shouxieai的infer框架对YOLOv8模型进行加速推理,操作过程如下所示:1.配置环境,依赖项,包括:(1).CUDA:11.8(2).cuDNN:8.7.0(3).TensorRT:8.5.3.1(4).ONNX:1.16.0(5).OpenCV:4.10.02.cloneinfer代码:https://github.com/shouxieai/infer3.使用
- ONNX Runtime、CUDA、cuDNN、TensorRT版本对应
可keke
ML&DLpytorchdeeplearning
文章目录ONNXRuntime的安装ONNXRuntime与CUDA、cuDNN的版本对应ONNXRuntime与ONNX的版本对应ONNXRuntime、TensorRT、CUDA版本对应ONNXRuntime的安装官方文档注意,到目前为止,onnxruntime-gpu在CUDA12.x和CUDA11.x下的安装命令是不同的,仔细阅读官方文档。验证安装python>>>importonnxru
- ONNXRuntime与CUDA版本对应
zy_destiny
部署YOLOonnxruntimeonnX部署cudapython
onnxruntime-gpu版本可以说是一个非常简单易用的框架,因为通常用pytorch训练的模型,在部署时,会首先转换成onnx,而onnxruntime和onnx又是有着同一个爸爸,无疑,在op的支持上肯定是最好的。通常在安装onnxruntime时,需要将其版本与pytorch版本和CUDA版本进行对应,其中ONNXRuntime与CUDA版本对应关系表如下表所示。ONNXRuntimeC
- 【已解决】onnx无法找到CUDA的路径
烟花节
已解决人工智能深度学习pythonpip
报错RuntimeError:D:\a\_work\1\s\onnxruntime\python\onnxruntime_pybind_state.cc:857onnxruntime::python::CreateExecutionProviderInstanceCUDA_PATHissetbutCUDAwasntabletobeloaded.Pleaseinstallthecorrectvers
- 地平线旭日x3派部署yolov8
巴啦啦魔仙变!!
YOLOpython数学建模
地平线旭日x3派部署yolov8总体流程1.导出onnx模型导出YOLOV8_onnxruntime.py验证onnxutils.py2.在开发机转为bin模型2.1准备数据图片2.2转换必备的yaml文件2.3开始转换3.开发机验证**quantized_model.onnx4.板子运行bin模型资源链接总体流程1.导出onnx模型导出使用yolov8的github库导出onnx模型。注意设置o
- 基于yolov8的口罩佩戴检测系统python源码+onnx模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习python
【算法介绍】基于YOLOv8的口罩佩戴检测系统是一款利用深度学习技术,特别是YOLOv8算法,实现高效、准确检测人脸是否佩戴口罩的系统。YOLOv8作为YOLO系列算法的最新版本,在检测速度和准确性上进行了显著优化,能够实时处理图像和视频数据。该系统通过训练大量标注了人脸和口罩状态(包括戴口罩、未戴口罩)的图片数据,构建了一个强大的目标检测模型。在实际应用中,该系统可以部署在公共场所如机场、车站、
- 基于yolov8的NEU-DET钢材缺陷检测系统python源码+onnx模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习YOLOpython开发语言
【算法介绍】基于YOLOv8的NEU-DET钢材缺陷检测系统是一种创新的解决方案,旨在通过深度学习技术实现对钢材表面缺陷的自动检测和识别。该系统利用YOLOv8算法,该算法以其高效、准确和实时检测的特点著称。NEU-DET数据集为该系统提供了丰富的训练资源,涵盖了热轧带钢的六种典型表面缺陷,包括轧制氧化皮、斑块、开裂、点蚀表面、内含物和划痕,每种缺陷均有大量样本,确保了模型的全面性和准确性。在模型
- [python]python onnxruntime gpu是否可用
FL1623863129
Pythonpython人工智能深度学习
在Python中,要检查ONNXRuntime是否可以使用GPU,可以使用以下代码:importonnxruntimeasort#检查CUDA是否可用defis_cuda_available():try:returnort.get_device()=='GPU'exceptException:returnFalse#检查ONNXRuntime是否支持CUDAdefis_onnxruntime_cu
- 基于yolov8的玉米病害检测系统python源码+onnx模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习YOLO
【算法介绍】基于YOLOv8的玉米病害检测系统是一款利用前沿深度学习技术开发的智能农业工具。该系统以YOLOv8为核心算法,通过大量玉米病害图片的训练,能够精准识别玉米害虫病害。该系统具备高效、准确的检测能力,支持图片、批量图片、视频以及实时摄像头等多种输入方式,为农户提供了极大的便利。用户只需简单操作,即可快速获取病害识别结果及相应的防治建议,有助于及时采取措施,有效控制病害扩散,提升农业生产的
- 在浏览器上使用transformers.js运行(WebGPU)RMBG-1.4进行抠图(背景移除)
shizidushu
WebGPUtransformers.jsRMBG-1.4抠图
在浏览器上使用transformers.js运行(WebGPU)RMBG-1.4进行抠图(背景移除)说明:首次发表日期:2024-08-28官方Github仓库地址:https://github.com/xenova/transformers.js/tree/main/examples/remove-background-client准备下载onnx模型文件:https://huggingface
- 基于yolov8的课堂行为检测系统python源码+onnx模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习YOLO
【算法介绍】基于YOLOv8的课堂行为检测系统是现代教育技术的创新应用,该系统利用YOLOv8这一先进的深度学习算法,实现了对学生课堂行为的自动、高效和精准监测。YOLOv8在目标检测领域以其卓越的性能和速度著称,通过对学生上课视频或实时摄像头的输入进行深度分析,系统能够准确识别学生的多种行为,如举手、阅读、写作、使用手机、低头等。该系统不仅提高了课堂监测的效率和准确性,还具备实时反馈功能,帮助教
- 基于yolov8的安全帽反光衣护目镜检测系统python源码+onnx模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习YOLO
【算法介绍】基于YOLOv8的安全帽、反光衣及护目镜检测系统是一款集成了前沿深度学习与计算机视觉技术的智能监控系统。该系统利用YOLOv8这一尖端的目标检测模型,结合云计算与自动化图像处理技术,实现对工地、化工厂、煤矿等高风险作业区域工作人员安全装备穿戴情况的实时监控。该系统能够无死角地检测工作人员是否按规定佩戴安全帽、反光衣及护目镜,有效提高了安全管理的效率和准确性。一旦系统识别到未按规定穿戴安
- onnx转tensorRT模型出现错误 This version of TensorRT only supports input K as an initializer
lainegates
pytorch人工智能深度学习神经网络
问题onnx模型转tensorRT模型时,出现错误。ThisversionofTensorRTonlysupportsinputKasaninitializer.TryapplyingconstantfoldingonthemodelusingPolygraphgoogle到tensorRT8.6支持了dynamictopk,不会再有这个问题。但项目上限制是tensorRT8.5Problemsc
- [模型部署] ONNX模型转TRT模型部分要点
lainegates
深度学习人工智能
本篇讲“ONNX模型转TRT模型”部分要点。以下皆为TRT模型的支持情况。模型存为ONNX格式后,已经丢失了很多信息,与原python代码极难对应。因为在“ONNX转TRT”时,转换出错,更难映射回python代码。解决此类问题的关键为:转onnx时要打开verbose选项,输出每一行python的模型代码被转成了哪些ONNX算子。torch.onnx.export(model,(dummy_in
- 基于yolov8的脑肿瘤检测系统python源码+onnx模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习YOLO人工智能
【算法介绍】基于YOLOv8的脑肿瘤检测系统是一项前沿的医疗应用,该系统利用YOLOv8这一高效的目标检测算法,实现对脑肿瘤病灶的快速、准确识别。YOLOv8作为YOLO系列的最新版本,不仅继承了前代版本在速度和精度上的优势,还通过改进的网络结构和优化策略,进一步提升了模型性能。在脑肿瘤检测中,YOLOv8通过深度学习技术,自动从脑部图像中提取特征,并学习目标的特征表示和位置信息。系统采用模块化设
- 基于yolov8的8种人脸表情检测系统python源码+onnx模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习YOLOpython开发语言
【算法介绍】基于YOLOv8的人脸表情检测系统是一个结合了先进目标检测算法(YOLOv8)与深度学习技术的项目,旨在实时或离线地识别并分类人脸表情(如快乐、悲伤、愤怒、惊讶、恐惧、厌恶、中立等)。以下是一个简短的介绍,概述了该系统Python源码的核心要点:该系统直接利用YOLOv8模型进行人脸表情识别。YOLOv8以其高效的速度和准确性著称,非常适合实时应用。Python源码实现通常包括以下几个
- 基于yolov8的绝缘子缺陷检测系统python源码+onnx模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习YOLO
【算法介绍】基于YOLOv8的绝缘子缺陷检测系统是一种利用先进深度学习技术的高效解决方案,旨在提升电力行业中输电线路的维护和监控水平。YOLOv8作为YOLO系列算法的最新版本,具备更高的检测速度和精度,特别适用于实时物体检测任务。该系统通过深入分析并标注绝缘子数据集,训练YOLOv8模型以精确识别输电线上的绝缘子及其缺陷状态。利用多尺度检测、FPN结构以及CSPDarknet网络等技术,YOLO
- 【Rust日报】 2019-05-14:Rust中哪些特性是零开销抽象的
六六子大顺1
tract-一个神经网络训练库Snips(一家做音频识别的创业公司)出品。在神经网络领域,现在基本已经被TensorFlow和PyTorch给占了。但是对于移动设备或IoT这些性能受限的设备,还有很多空间可以尝试。TensorFlow组推出了TensorFlowLite,微软的ONNX看上去也很有前景。一些硬件厂商也推出了他们自己的方案AndroidNNAPI,ARMNNSDK,AppleBNNS
- pyinstaller打包onnxruntime-gpu报错找不到CUDA的解决方案
布呐呐na
人工智能python
问题说明:使用onnxruntime-gpu完成了深度学习模型部署,但在打包时发生了报错:找不到CUDA具体问题描述:RuntimeError:D:\a\_work\1\s\onnxruntime\python\onnxruntime_pybind_state.cc:857onnxruntime::python::CreateExecutionProviderInstanceCUDA_PATHis
- PyTorch训练,TensorRT部署的简要步骤(采用ONNX中转的方式)
赛先生.AI
TensorRTpytorch人工智能TensorRTONNX
1.简述使用PyTorch执行训练,使用TensorRT进行部署有很多种方法,比较常用的是基于INetworkDefinition进行每一层的自定义,这样一来,会反向促使研究者能够对真个网络的细节有更深的理解。另一种相对简便的方式就是通过ONNX中间转换的形式。本文主要针对该途径进行简单的脉络阐述。2.导出ONNX如果使用的是PyTorch训练框架,可采用其自带的ONNX导出API。torch.o
- tvm交叉编译android opencl
极乐净土0822
androidtvmndk交叉编译opencl
模型编译:#encoding:utf-8importonnximportnumpyasnpimporttvmimporttvm.relayasrelayimportosfromtvm.contribimportndkonnx_model=onnx.load('mobilenet_v3_small.onnx')x=np.ones([1,3,224,224])input_name='input1'sh
- C# Onnx GroundingDINO 开放世界目标检测
乱蜂朝王
人工智能c#目标检测开发语言
目录介绍效果模型信息项目代码下载介绍地址:https://github.com/IDEA-Research/GroundingDINOOfficialimplementationofthepaper"GroundingDINO:MarryingDINOwithGroundedPre-TrainingforOpen-SetObjectDetection"效果在运行程序时,要注意输入的提示词的格式,类
- 使用TensorRT在PyTorch项目中加速深度学习推理
从零开始学习人工智能
深度学习pytorch人工智能
在PyTorch项目中使用TensorRT进行深度学习推理通常涉及以下步骤:模型训练:首先,在PyTorch中训练你的深度学习模型。模型导出:训练完成后,将模型从PyTorch导出为ONNX(OpenNeuralNetworkExchange)格式。ONNX是一种用于表示深度学习模型的开放格式,它使得模型可以在不同的深度学习框架之间互操作。模型优化:使用TensorRT优化ONNX模型。Tenso
- Deep Learning with OpenCV DNN Module介绍
lida2003
Linux深度学习opencvdnn计算机视觉人工智能
DeepLearningwithOpenCVDNNModule介绍1.源由2.为什么/什么是OpenCVDNNModule?2.1支持的不同深度学习功能2.2支持的不同模型2.3支持的不同框架3.如何使用OpenCVDNN模块3.1使用从Keras和PyTorch等不同框架转换为ONNX格式的模型3.2使用OpenCVDNN模块的基本步骤4.参考资料1.源由看了一些资料和数据,感觉他讲的非常好,也
- MIT-BEVFusion系列八--onnx导出1 综述及相机网络导出
端木的AI探索屋
bevfusiononnx量化自动驾驶bevfusion
目录综述export-camera.py加载模型加载数据生成需要导出成onnx的模块Backbone模块VTransform模块生成onnx使用pytorch原生的伪量化计算方法导出camera.backbone.onnx导出camera.vtransform.onnx综述bevfusion的各个部分的实现有着鲜明的特点,并且相互独立,特别是考虑到后续部署的需要,这里将整个网络,分成多个部分,分别
- 杂谈--spconv导出中onnx的扩展阅读
端木的AI探索屋
onnxspconv稀疏卷积protobuf
Onnx使用Onnx介绍Onnx(OpenNeuralNetworkExchange)的本质是一种Protobuf格式文件,通常看到的.onnx文件其实就是通过Protobuf序列化储存的文件。onnx-ml.proto通过protoc(Protobuf提供的编译程序)编译得到onnx-ml.pb.h和onnx-ml.pb.cc或onnx_ml_pb2.py,然后用onnx_ml.pb.cc和代码
- 设计模式介绍
tntxia
设计模式
设计模式来源于土木工程师 克里斯托弗 亚历山大(http://en.wikipedia.org/wiki/Christopher_Alexander)的早期作品。他经常发表一些作品,内容是总结他在解决设计问题方面的经验,以及这些知识与城市和建筑模式之间有何关联。有一天,亚历山大突然发现,重复使用这些模式可以让某些设计构造取得我们期望的最佳效果。
亚历山大与萨拉-石川佳纯和穆雷 西乐弗斯坦合作
- android高级组件使用(一)
百合不是茶
androidRatingBarSpinner
1、自动完成文本框(AutoCompleteTextView)
AutoCompleteTextView从EditText派生出来,实际上也是一个文本编辑框,但它比普通编辑框多一个功能:当用户输入一个字符后,自动完成文本框会显示一个下拉菜单,供用户从中选择,当用户选择某个菜单项之后,AutoCompleteTextView按用户选择自动填写该文本框。
使用AutoCompleteTex
- [网络与通讯]路由器市场大有潜力可挖掘
comsci
网络
如果国内的电子厂商和计算机设备厂商觉得手机市场已经有点饱和了,那么可以考虑一下交换机和路由器市场的进入问题.....
这方面的技术和知识,目前处在一个开放型的状态,有利于各类小型电子企业进入
&nbs
- 自写简单Redis内存统计shell
商人shang
Linux shell统计Redis内存
#!/bin/bash
address="192.168.150.128:6666,192.168.150.128:6666"
hosts=(${address//,/ })
sfile="staticts.log"
for hostitem in ${hosts[@]}
do
ipport=(${hostitem
- 单例模式(饿汉 vs懒汉)
oloz
单例模式
package 单例模式;
/*
* 应用场景:保证在整个应用之中某个对象的实例只有一个
* 单例模式种的《 懒汉模式》
* */
public class Singleton {
//01 将构造方法私有化,外界就无法用new Singleton()的方式获得实例
private Singleton(){};
//02 申明类得唯一实例
priva
- springMvc json支持
杨白白
json springmvc
1.Spring mvc处理json需要使用jackson的类库,因此需要先引入jackson包
2在spring mvc中解析输入为json格式的数据:使用@RequestBody来设置输入
@RequestMapping("helloJson")
public @ResponseBody
JsonTest helloJson() {
- android播放,掃描添加本地音頻文件
小桔子
最近幾乎沒有什麽事情,繼續鼓搗我的小東西。想在項目中加入一個簡易的音樂播放器功能,就像華為p6桌面上那麼大小的音樂播放器。用過天天動聽或者QQ音樂播放器的人都知道,可已通過本地掃描添加歌曲。不知道他們是怎麼實現的,我覺得應該掃描設備上的所有文件,過濾出音頻文件,每個文件實例化為一個實體,記錄文件名、路徑、歌手、類型、大小等信息。具體算法思想,
- oracle常用命令
aichenglong
oracledba常用命令
1 创建临时表空间
create temporary tablespace user_temp
tempfile 'D:\oracle\oradata\Oracle9i\user_temp.dbf'
size 50m
autoextend on
next 50m maxsize 20480m
extent management local
- 25个Eclipse插件
AILIKES
eclipse插件
提高代码质量的插件1. FindBugsFindBugs可以帮你找到Java代码中的bug,它使用Lesser GNU Public License的自由软件许可。2. CheckstyleCheckstyle插件可以集成到Eclipse IDE中去,能确保Java代码遵循标准代码样式。3. ECLemmaECLemma是一款拥有Eclipse Public License许可的免费工具,它提供了
- Spring MVC拦截器+注解方式实现防止表单重复提交
baalwolf
spring mvc
原理:在新建页面中Session保存token随机码,当保存时验证,通过后删除,当再次点击保存时由于服务器端的Session中已经不存在了,所有无法验证通过。
1.新建注解:
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- 《Javascript高级程序设计(第3版)》闭包理解
bijian1013
JavaScript
“闭包是指有权访问另一个函数作用域中的变量的函数。”--《Javascript高级程序设计(第3版)》
看以下代码:
<script type="text/javascript">
function outer() {
var i = 10;
return f
- AngularJS Module类的方法
bijian1013
JavaScriptAngularJSModule
AngularJS中的Module类负责定义应用如何启动,它还可以通过声明的方式定义应用中的各个片段。我们来看看它是如何实现这些功能的。
一.Main方法在哪里
如果你是从Java或者Python编程语言转过来的,那么你可能很想知道AngularJS里面的main方法在哪里?这个把所
- [Maven学习笔记七]Maven插件和目标
bit1129
maven插件
插件(plugin)和目标(goal)
Maven,就其本质而言,是一个插件执行框架,Maven的每个目标的执行逻辑都是由插件来完成的,一个插件可以有1个或者几个目标,比如maven-compiler-plugin插件包含compile和testCompile,即maven-compiler-plugin提供了源代码编译和测试源代码编译的两个目标
使用插件和目标使得我们可以干预
- 【Hadoop八】Yarn的资源调度策略
bit1129
hadoop
1. Hadoop的三种调度策略
Hadoop提供了3中作业调用的策略,
FIFO Scheduler
Fair Scheduler
Capacity Scheduler
以上三种调度算法,在Hadoop MR1中就引入了,在Yarn中对它们进行了改进和完善.Fair和Capacity Scheduler用于多用户共享的资源调度
2. 多用户资源共享的调度
- Nginx使用Linux内存加速静态文件访问
ronin47
Nginx是一个非常出色的静态资源web服务器。如果你嫌它还不够快,可以把放在磁盘中的文件,映射到内存中,减少高并发下的磁盘IO。
先做几个假设。nginx.conf中所配置站点的路径是/home/wwwroot/res,站点所对应文件原始存储路径:/opt/web/res
shell脚本非常简单,思路就是拷贝资源文件到内存中,然后在把网站的静态文件链接指向到内存中即可。具体如下:
- 关于Unity3D中的Shader的知识
brotherlamp
unityunity资料unity教程unity视频unity自学
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,然后我们来看下Unity3D自带的60多个S
- CopyOnWriteArrayList vs ArrayList
bylijinnan
java
package com.ljn.base;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
/**
* 总述:
* 1.ArrayListi不是线程安全的,CopyO
- 内存中栈和堆的区别
chicony
内存
1、内存分配方面:
堆:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。
栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中
- 回答一位网友对Scala的提问
chenchao051
scalamap
本来准备在私信里直接回复了,但是发现不太方便,就简要回答在这里。 问题 写道 对于scala的简洁十分佩服,但又觉得比较晦涩,例如一例,Map("a" -> List(11,111)).flatMap(_._2),可否说下最后那个函数做了什么,真正在开发的时候也会如此简洁?谢谢
先回答一点,在实际使用中,Scala毫无疑问就是这么简单。
- mysql 取每组前几条记录
daizj
mysql分组最大值最小值每组三条记录
一、对分组的记录取前N条记录:例如:取每组的前3条最大的记录 1.用子查询: SELECT * FROM tableName a WHERE 3> (SELECT COUNT(*) FROM tableName b WHERE b.id=a.id AND b.cnt>a. cnt) ORDER BY a.id,a.account DE
- HTTP深入浅出 http请求
dcj3sjt126com
http
HTTP(HyperText Transfer Protocol)是一套计算机通过网络进行通信的规则。计算机专家设计出HTTP,使HTTP客户(如Web浏览器)能够从HTTP服务器(Web服务器)请求信息和服务,HTTP目前协议的版本是1.1.HTTP是一种无状态的协议,无状态是指Web浏览器和Web服务器之间不需要建立持久的连接,这意味着当一个客户端向服务器端发出请求,然后We
- 判断MySQL记录是否存在方法比较
dcj3sjt126com
mysql
把数据写入到数据库的时,常常会碰到先要检测要插入的记录是否存在,然后决定是否要写入。
我这里总结了判断记录是否存在的常用方法:
sql语句: select count ( * ) from tablename;
然后读取count(*)的值判断记录是否存在。对于这种方法性能上有些浪费,我们只是想判断记录记录是否存在,没有必要全部都查出来。
- 对HTML XML的一点认识
e200702084
htmlxml
感谢http://www.w3school.com.cn提供的资料
HTML 文档中的每个成分都是一个节点。
节点
根据 DOM,HTML 文档中的每个成分都是一个节点。
DOM 是这样规定的:
整个文档是一个文档节点
每个 HTML 标签是一个元素节点
包含在 HTML 元素中的文本是文本节点
每一个 HTML 属性是一个属性节点
注释属于注释节点
Node 层次
- jquery分页插件
genaiwei
jqueryWeb前端分页插件
//jquery页码控件// 创建一个闭包 (function($) { // 插件的定义 $.fn.pageTool = function(options) { var totalPa
- Mybatis与Ibatis对照入门于学习
Josh_Persistence
mybatisibatis区别联系
一、为什么使用IBatis/Mybatis
对于从事 Java EE 的开发人员来说,iBatis 是一个再熟悉不过的持久层框架了,在 Hibernate、JPA 这样的一站式对象 / 关系映射(O/R Mapping)解决方案盛行之前,iBaits 基本是持久层框架的不二选择。即使在持久层框架层出不穷的今天,iBatis 凭借着易学易用、
- C中怎样合理决定使用那种整数类型?
秋风扫落叶
c数据类型
如果需要大数值(大于32767或小于32767), 使用long 型。 否则, 如果空间很重要 (如有大数组或很多结构), 使用 short 型。 除此之外, 就使用 int 型。 如果严格定义的溢出特征很重要而负值无关紧要, 或者你希望在操作二进制位和字节时避免符号扩展的问题, 请使用对应的无符号类型。 但是, 要注意在表达式中混用有符号和无符号值的情况。
&nbs
- maven问题
zhb8015
maven问题
问题1:
Eclipse 中 新建maven项目 无法添加src/main/java 问题
eclipse创建maevn web项目,在选择maven_archetype_web原型后,默认只有src/main/resources这个Source Floder。
按照maven目录结构,添加src/main/ja
- (二)androidpn-server tomcat版源码解析之--push消息处理
spjich
javaandrodipn推送
在 (一)androidpn-server tomcat版源码解析之--项目启动这篇中,已经描述了整个推送服务器的启动过程,并且把握到了消息的入口即XmppIoHandler这个类,今天我将继续往下分析下面的核心代码,主要分为3大块,链接创建,消息的发送,链接关闭。
先贴一段XmppIoHandler的部分代码
/**
* Invoked from an I/O proc
- 用js中的formData类型解决ajax提交表单时文件不能被serialize方法序列化的问题
中华好儿孙
JavaScriptAjaxWeb上传文件FormData
var formData = new FormData($("#inputFileForm")[0]);
$.ajax({
type:'post',
url:webRoot+"/electronicContractUrl/webapp/uploadfile",
data:formData,
async: false,
ca
- mybatis常用jdbcType数据类型
ysj5125094
mybatismapperjdbcType
MyBatis 通过包含的jdbcType
类型
BIT FLOAT CHAR