Hadoop2.6.5单机安装

 

 

Hadoop2.6.5单机安装

 

 

JDK的安装

 

配置JDK环境变量

 

[root@spark1 soft]# vim /etc/profile
#JDK环境变量配置
#export JAVA_HOME=/application/jdk1.7.0_79
export JAVA_HOME=/application/jdk1.8.0_172
export JRE_HOME=$JAVA_HOME/jre
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib/rt.jar
export PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin

环境变量生效

[root@spark1 soft]# source /etc/profile

[root@spark1 soft]# java -version
openjdk version "1.8.0_121"
OpenJDK Runtime Environment (build 1.8.0_121-b13)
OpenJDK 64-Bit Server VM (build 25.121-b13, mixed mode)
[root@spark1 soft]# 

 

配置SSH无密码登陆

$ ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa
$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

验证ssh,# ssh localhost 
不需要输入密码即可登录。

 

 

 

Hadoop安装

 

下载

下载地址:

https://www.apache.org/dyn/closer.cgi/hadoop/common/

https://mirrors.tuna.tsinghua.edu.cn/apache/hadoop/common/hadoop-2.6.5/hadoop-2.6.5.tar.gz

 

解压安装 

[root@spark1 soft]# tar -zxvf hadoop-2.6.5.tar.gz -C /application/

 

创建hadoop安装所需目录

在/root /hadoop/目录下,建立tmp、hdfs/name、hdfs/data目录,执行如下命令 

#mkdir /root/hadoop/tmp 
#mkdir /root/hadoop/hdfs 
#mkdir /root/hadoop/hdfs/data 
#mkdir /root/hadoop/hdfs/name

 

设置Hadoop环境变量

#Hadoop环境变量配置
export HADOOP_HOME=/application/hadoop-2.6.5
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
[root@spark1 soft]# source /etc/profile

 

 

Hadoop配置 

进入$HADOOP_HOME/etc/hadoop目录,配置 hadoop-env.sh等。涉及的配置文件如下: 
1)hadoop-2.6.5/etc/hadoop/hadoop-env.sh 
2)hadoop-2.6.5/etc/hadoop/yarn-env.sh 
3)hadoop-2.6.5/etc/hadoop/core-site.xml 
4)hadoop-2.6.5/etc/hadoop/hdfs-site.xml 
5)hadoop-2.6.5/etc/hadoop/mapred-site.xml 
6)hadoop-2.6.5/etc/hadoop/yarn-site.xml

 

1)配置hadoop-env.sh

# The java implementation to use.
#export JAVA_HOME=${JAVA_HOME}
export JAVA_HOME=/application/jdk1.8.0_172

 

2)配置yarn-env.sh

# some Java parameters
# export JAVA_HOME=/home/y/libexec/jdk1.6.0/
export JAVA_HOME=/application/jdk1.8.0_172

 

 

3)配置core-site.xml 


添加如下配置:

[root@spark1 hadoop]# cat core-site.xml



 
    fs.default.name
    hdfs://spark1:9000
    HDFS的URI,文件系统://namenode标识:端口号

 

    hadoop.tmp.dir
    /root/hadoop/tmp
    namenode上本地的hadoop临时文件夹



[root@spark1 hadoop]# 

 

4)配置hdfs-site.xml 

[root@spark1 hadoop]# cat hdfs-site.xml






    dfs.name.dir
    /root/hadoop/hdfs/name
    namenode上存储hdfs名字空间元数据  

 

    dfs.data.dir
    /root/hadoop/hdfs/data
    datanode上数据块的物理存储位置

 

    dfs.replication
    1
    副本个数,配置默认是3,应小于datanode机器数量


[root@spark1 hadoop]# 

 

5)配置mapred-site.xml 

[root@spark1 hadoop]# cat mapred-site.xml




        mapreduce.framework.name
        yarn


[root@spark1 hadoop]# 

 

6)配置yarn-site.xml 


[root@spark1 hadoop]# cat yarn-site.xml





        yarn.nodemanager.aux-services
        mapreduce_shuffle


        yarn.resourcemanager.webapp.address
        ${yarn.resourcemanager.hostname}:8099


[root@spark1 hadoop]# 

说明:

    1)默认端口是8088;

    2)这里我设置了yarn.resourcemanager.webapp.address为:${yarn.resourcemanager.hostname}:8099;

 

 

Hadoop启动 

 

1)格式化namenode

hadoop namenode -format

 

2)启动NameNode 和 DataNode 守护进程

start-dfs.sh

 

3)启动ResourceManager 和 NodeManager 守护进程

start-yarn.sh

 

启动验证 

1)执行jps命令,有如下进程,说明Hadoop正常启动

[root@spark1 soft]# jps
5649 DataNode
6631 ResourceManager
5815 SecondaryNameNode
5527 NameNode
6728 NodeManager
7981 Jps
[root@spark1 soft]#

2)访问hdfs

http://192.168.2.191:50070

Hadoop2.6.5单机安装_第1张图片

 

3)在浏览器中输入:http://192.168.2.191:8099/cluster 即可看到YARN的ResourceManager的界面。

注意:默认端口是8088,这里我设置了yarn.resourcemanager.webapp.address为:${yarn.resourcemanager.hostname}:8099

Hadoop2.6.5单机安装_第2张图片

 

运行Hadoop的一个例子

[root@spark1 hadoop]# hadoop jar /application/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.5.jar pi 2 100
Number of Maps  = 2
Samples per Map = 100
19/04/13 13:46:49 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Wrote input for Map #0
Wrote input for Map #1
Starting Job
19/04/13 13:46:51 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
19/04/13 13:46:52 INFO input.FileInputFormat: Total input paths to process : 2
19/04/13 13:46:52 INFO mapreduce.JobSubmitter: number of splits:2
19/04/13 13:46:52 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1555134174372_0001
19/04/13 13:46:53 INFO impl.YarnClientImpl: Submitted application application_1555134174372_0001
19/04/13 13:46:53 INFO mapreduce.Job: The url to track the job: http://spark1:8099/proxy/application_1555134174372_0001/
19/04/13 13:46:53 INFO mapreduce.Job: Running job: job_1555134174372_0001
19/04/13 13:47:00 INFO mapreduce.Job: Job job_1555134174372_0001 running in uber mode : false
19/04/13 13:47:00 INFO mapreduce.Job:  map 0% reduce 0%
19/04/13 13:47:14 INFO mapreduce.Job:  map 100% reduce 0%
19/04/13 13:47:19 INFO mapreduce.Job:  map 100% reduce 100%
19/04/13 13:47:19 INFO mapreduce.Job: Job job_1555134174372_0001 completed successfully
19/04/13 13:47:19 INFO mapreduce.Job: Counters: 49
	File System Counters
		FILE: Number of bytes read=50
		FILE: Number of bytes written=322803
		FILE: Number of read operations=0
		FILE: Number of large read operations=0
		FILE: Number of write operations=0
		HDFS: Number of bytes read=522
		HDFS: Number of bytes written=215
		HDFS: Number of read operations=11
		HDFS: Number of large read operations=0
		HDFS: Number of write operations=3
	Job Counters 
		Launched map tasks=2
		Launched reduce tasks=1
		Data-local map tasks=2
		Total time spent by all maps in occupied slots (ms)=23209
		Total time spent by all reduces in occupied slots (ms)=2996
		Total time spent by all map tasks (ms)=23209
		Total time spent by all reduce tasks (ms)=2996
		Total vcore-milliseconds taken by all map tasks=23209
		Total vcore-milliseconds taken by all reduce tasks=2996
		Total megabyte-milliseconds taken by all map tasks=23766016
		Total megabyte-milliseconds taken by all reduce tasks=3067904
	Map-Reduce Framework
		Map input records=2
		Map output records=4
		Map output bytes=36
		Map output materialized bytes=56
		Input split bytes=286
		Combine input records=0
		Combine output records=0
		Reduce input groups=2
		Reduce shuffle bytes=56
		Reduce input records=4
		Reduce output records=0
		Spilled Records=8
		Shuffled Maps =2
		Failed Shuffles=0
		Merged Map outputs=2
		GC time elapsed (ms)=2514
		CPU time spent (ms)=12980
		Physical memory (bytes) snapshot=697511936
		Virtual memory (bytes) snapshot=6333603840
		Total committed heap usage (bytes)=499646464
	Shuffle Errors
		BAD_ID=0
		CONNECTION=0
		IO_ERROR=0
		WRONG_LENGTH=0
		WRONG_MAP=0
		WRONG_REDUCE=0
	File Input Format Counters 
		Bytes Read=236
	File Output Format Counters 
		Bytes Written=97
Job Finished in 28.254 seconds
Estimated value of Pi is 3.12000000000000000000
[root@spark1 hadoop]# 

 

 


==============================
QQ群:143522604
群里有相关资源
欢迎和大家一起学习、交流、提升!
==============================

你可能感兴趣的:(【大数据】,【大数据】【Hadoop】)