Python 中不存在私有变量一说,若是遇到需要保护的变量,使用小写和一个前导下划线。但这只是程序员之间的一个约定,用于警告说明这是一个私有变量,外部类不要去访问它。但实际上,外部类还是可以访问到这个变量。
两个前导下划线会导致变量在解释期间被更名。这是为了避免内置变量和其他变量产生冲突。用户定义的变量要严格避免这种风格。以免导致混乱。
总体而言应该使用,小写和下划线。
但有些比较老的库使用的是混合大小写,即首单词小写,之后每个单词第一个字母大写,其余小写。但现在,小写和下划线已成为规范。
私有方法:小写和一个前导下划线
这里和私有变量一样,并不是真正的私有访问权限。同时也应该注意一般函数不要使用两个前导下划线(当遇到两个前导下划线时,Python 的名称改编特性将发挥作用)。
特殊方法:小写和两个前导下划线,两个后置下划线
这种风格只应用于特殊函数,比如操作符重载等。
函数参数:小写和下划线,缺省值等号两边无空格
类总是使用驼峰格式命名,即所有单词首字母大写其余字母小写。
类名应该简明,精确,并足以从中理解类所完成的工作。常见的一个方法是使用表示其类型或者特性的后缀,例如:
SQLEngine,MimeTypes对于基类而言,可以使用一个 Base 或者 Abstract 前缀BaseCookie,AbstractGroup
除特殊模块 init 之外,模块名称都使用不带下划线的小写字母。
若是它们实现一个协议,那么通常使用lib为后缀,例如:
import smtplib
import os
import sys
可以安装一个 pep8 脚本用于验证你的代码风格是否符合 PEP8。
List Tuple Dictionary
from collections import OrderedDict
dic=OrderedDict()#声明有序字典
yield 简单说来就是一个生成器,这样函数它记住上次返 回时在函数体中的位置。对生成器第 二次(或n 次)调用跳转至该函 次)调用跳转至该函数。
pass语句什么也不做,一般作为占位符或者创建占位程序,pass语句不会执行任何操作。
Py3.0运行 pystone benchmark的速度比Py2.5慢30%。Guido认为Py3.0有极大的优化空间,在字符串和整形操作上可
以取得很好的优化结果。
Py3.1性能比Py2.5慢15%,还有很大的提升空间。
Py3.X源码文件默认使用utf-8编码
去除了<>,全部改用!=
去除``,全部改用repr()
关键词加入as 和with,还有True,False,None
整型除法返回浮点数,要得到整型结果,请使用//
加入nonlocal语句。使用noclocal x可以直接指派外围(非全局)变量
去除print语句,加入print()函数实现相同的功能。同样的还有exec语句,已经改为exec()函数
改变了顺序操作符的行为,例如x
输入函数改变了,删除了raw_input,用input代替:
# 2.X:
guess = int(raw_input('Enter an integer : ')) # 读取键盘输入的方法
# 3.X:
guess = int(input('Enter an integer : '))
去除元组参数解包。不能def(a, (b, c)):pass这样定义函数了
新式的8进制字变量,相应地修改了oct()函数。
增加了 2进制字面量和bin()函数
扩展的可迭代解包。在Py3.X 里,a, b, *rest = seq和 *rest, a = seq都是合法的,只要求两点:rest是list 对象和seq是可迭代的。
新的super(),可以不再给super()传参数,
新的metaclass语法:
class Foo(*bases, **kwds):
pass
支持class decorator。用法与函数decorator一样:
1)所以异常都从 BaseException继承,并删除了StardardError
2)去除了异常类的序列行为和.message属性
3)用 raise Exception(args)代替 raise Exception, args语法
4)捕获异常的语法改变,引入了as关键字来标识异常实例
5)异常链,因为__context__在3.0a1版本中没有实现
1)移除了cPickle模块,可以使用pickle模块代替。最终我们将会有一个透明高效的模块。
2)移除了imageop模块
3)移除了 audiodev, Bastion, bsddb185, exceptions, linuxaudiodev, md5, MimeWriter, mimify, popen2,
rexec, sets, sha, stringold, strop, sunaudiodev, timing和xmllib模块
4)移除了bsddb模块(单独发布,可以从http://www.jcea.es/programacion/pybsddb.htm获取)
5)移除了new模块
6)os.tmpnam()和os.tmpfile()函数被移动到tmpfile模块下
7)tokenize模块现在使用bytes工作。主要的入口点不再是generate_tokens,而是 tokenize.tokenize()
1)xrange() 改名为range(),要想使用range()获得一个list,必须显式调用:
list(range(10)) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
2)bytes对象不能hash,也不支持 b.lower()、b.strip()和b.split()方法,但对于后两者可以使用 b.strip(b’ \n\t\r \f’)和b.split(b’ ‘)来达到相同目的
3)zip()、map()和filter()都返回迭代器。而apply()、 callable()、coerce()、 execfile()、reduce()和reload ()函数都被去除了现在可以使用hasattr()来替换 callable(). hasattr()的语法如:hasattr(string, ‘name’)
4)string.letters和相关的.lowercase和.uppercase被去除,请改用string.ascii_letters 等
5)如果x < y的不能比较,抛出TypeError异常。2.x版本是返回伪随机布尔值的
6)__getslice__系列成员被废弃。a[i:j]根据上下文转换为a.getitem(slice(I, j))或 __setitem__和 __delitem__调用
7)file类被废弃
GIL的全称是Global Interpreter Lock(全局解释器锁),来源是python设计之初的考虑,为了数据安全所做的决定。每个CPU在同一时间只能执行一个线程(在单核CPU下的多线程其实都只是并发,不是并行,并发和并行从宏观上来讲都是同时处理多路请求的概念。但并发和并行又有区别,并行是指两个或者多个事件在同一时刻发生;而并发是指两个或多个事件在同一时间间隔内发生。)
在Python多线程下,每个线程的执行方式:
1、获取GIL
2、执行代码直到sleep或者是python虚拟机将其挂起。
3、释放GIL
可见,某个线程想要执行,必须先拿到GIL,我们可以把GIL看作是“通行证”,并且在一个python进程中,GIL只有一个。拿不到通行证的线程,就不允许进入CPU执行。
在Python2.x里,GIL的释放逻辑是当前线程遇见IO操作或者ticks计数达到100(ticks可以看作是Python自身的一个计数器,专门做用于GIL,每次释放后归零,这个计数可以通过 sys.setcheckinterval 来调整),进行释放。而每次释放GIL锁,线程进行锁竞争、切换线程,会消耗资源。并且由于GIL锁存在,python里一个进程永远只能同时执行一个线程(拿到GIL的线程才能执行)。
IO密集型代码(文件处理、网络爬虫等),多线程能够有效提升效率(单线程下有IO操作会进行IO等待,造成不必要的时间浪费,而开启多线程能在线程A等待时,自动切换到线程B,可以不浪费CPU的资源,从而能提升程序执行效率),所以多线程对IO密集型代码比较友好。
python不像C++,Java等语言一样,他们可以不用事先声明变量类型而直接对变量进行赋值。对Python语言来讲,对象的类型和内存都是在运行时确定的。这也是为什么我们称Python语言为动态类型的原因(这里我们把动态类型可以简单的归结为对变量内存地址的分配是在运行时自动判断变量类型并对变量进行赋值)。
Python采用了类似Windows内核对象一样的方式来对内存进行管理。每一个对象,都维护这一个对指向该对对象的引用的计数。当变量被绑定在一个对象上的时候,该变量的引用计数就是1,(还有另外一些情况也会导致变量引用计数的增加),系统会自动维护这些标签,并定时扫描,当某标签的引用计数变为0的时候,该对就会被回收。
Python的内存机制以金字塔行,-1,-2层主要有操作系统进行操作,
第0层是C中的malloc,free等内存分配和释放函数进行操作;
第1层和第2层是内存池,有Python的接口函数PyMem_Malloc函数实现,当对象小于256K时有该层直接分配内存;
第3层是最上层,也就是我们对Python对象的直接操作;
在 C 中如果频繁的调用 malloc 与 free 时,是会产生性能问题的.再加上频繁的分配与释放小块的内存会产生内存碎片. Python 在这里主要干的工作有:
如果请求分配的内存在1~256字节之间就使用自己的内存管理系统,否则直接使用 malloc.
这里还是会调用 malloc 分配内存,但每次会分配一块大小为256k的大块内存.
经由内存池登记的内存到最后还是会回收到内存池,并不会调用 C 的 free 释放掉.以便下次使用.对于简单的Python对象,例如数值、字符串,元组(tuple不允许被更改)采用的是复制的方式(深拷贝?),也就是说当将另一个变量B赋值给变量A时,虽然A和B的内存空间仍然相同,但当A的值发生变化时,会重新给A分配空间,A和B的地址变得不再相同
就是创建了对象的一个新的引用,修改其中任意一个变量都会影响到另一个。
创建一个新的对象,但它包含的是对原始对象中包含项的引用(如果用引用的方式修改其中一个对象,另外一个也会修改改变){1,完全切片方法;2,工厂函数,如list();3,copy模块的copy()函数}
创建一个新的对象,并且递归的复制它所包含的对象(修改其中一个,另外一个不会改变){copy模块的deep.deepcopy()函数}
可以使用re模块中的sub()函数或者subn()函数来进行查询和替换,格式:
# replacement是被替换成的文本,string是需要被替换的文本,count是一个可选参数,指最大被替换的数量
sub(replacement, string[,count=0])
递归的终止条件一般定义在递归函数内部,在递归调用前要做一个条件判断,根据判断的结果选择是继续调用自身,还是return;返回终止递归。
终止的条件:
前面讲过,社会化的分工越来越细,自然在软件设计方面也是如此,因此对象的创建和对象的使用分开也就成为了必然趋势。因为对象的创建会消耗掉系统的很多资源,所以单独对对象的创建进行研究,从而能够高效地创建对象就是创建型模式要探讨的问题。这里有6个具体的创建型模式可供研究,它们分别是:
简单工厂模式(Simple Factory);
工厂方法模式(Factory Method);
抽象工厂模式(Abstract Factory);
创建者模式(Builder);
原型模式(Prototype);
单例模式(Singleton)。
说明:严格来说,简单工厂模式不是GoF总结出来的23种设计模式之一。
在解决了对象的创建问题之后,对象的组成以及对象之间的依赖关系就成了开发人员关注的焦点,因为如何设计对象的结构、继承和依赖关系会影响到后续程序的维护性、代码的健壮性、耦合性等。对象结构的设计很容易体现出设计人员水平的高低,这里有7个具体的结构型模式可供研究,它们分别是:
外观模式(Facade);
适配器模式(Adapter);
代理模式(Proxy);
装饰模式(Decorator);
桥模式(Bridge);
组合模式(Composite);
享元模式(Flyweight)
在对象的结构和对象的创建问题都解决了之后,就剩下对象的行为问题了,如果对象的行为设计的好,那么对象的行为就会更清晰,它们之间的协作效率就会提高,这里有11个具体的行为型模式可供研究,它们分别是:
模板方法模式(Template Method);
观察者模式(Observer);
状态模式(State);
策略模式(Strategy);
职责链模式(Chain of Responsibility);
命令模式(Command);
访问者模式(Visitor);
调停者模式(Mediator);
备忘录模式(Memento);
迭代器模式(Iterator);
解释器模式(Interpreter)。
单例模式应用的场景一般发现在以下条件下:
(1)资源共享的情况下,避免由于资源操作时导致的性能或损耗等。如日志文件,应用配置。
(2)控制资源的情况下,方便资源之间的互相通信。如线程池等。
1.网站的计数器
2.应用配置
3.多线程池
4.数据库配置,数据库连接池
5.应用程序的日志应用…
内部函数可以使用外部函数变量的行为,就叫闭包