http://www.cs.cornell.edu/courses/cs5670/2017sp/projects/pa2/index.html
http://www.cs.cornell.edu/courses/cs5670/2019sp/projects/pa2/index.html
http://www.cs.cornell.edu/courses/cs5670/2019sp
https://courses.cs.washington.edu/courses/cse576/06sp/projects/proj2-features/index.html
https://www.cc.gatech.edu/classes/AY2016/cs4476_fall/results/proj2/html/alieberman3/
https://www.robots.ox.ac.uk/~vgg/research/affine/det_eval_files/mikolajczyk_pami2004.pdf
https://github.com/JiawangBian/FM-Bench
更新:
Neural-Guided RANSAC 优于 RANSAC、USAC和Deep F-Mat等算法,现已开源!
From 海德堡大学主页:Neural-Guided RANSAC - Visual Learning Lab Heidelb...
论文下载链接:[1905.04132] Neural-Guided RANSAC: Learning Where ...
代码:GitHub - vislearn/ngransac: Neural-Guided RANSAC f...
GLAMpoints:贪婪地学习准确的特征点匹配
《GLAMpoints: Greedily Learned Accurate Match points》
注:基于深度学习的特征点检测器 GLAMpoints,性能优于 SIFT等算法每年还是有几篇用CNN做特征点检测或者匹配的论文,Ket.Net 性能优于SuperPoint和LF-Net等特征/关键点检测网络。From 帝国理工大学&Arraiy
arXiv:[1908.06812] GLAMpoints: Greedily Learned Accurate...
注:Ket.Net 性能优于SuperPoint和LF-Net等特征/关键点检测网络
论文下载链接:[1904.00889] Key.Net: Keypoint Detection by Handcr...
代码:GitHub - axelBarroso/Key.Net: Code for the ICCV19 ...
LCD 一种可学习的跨域描述符,能用于2D图像匹配和3D点云匹配,一举两得!2D优于 SIFT, SuperPoint; 3D优于PointNetAE。
From 新加坡科技设计大学&斯坦福大学&东京大学等 | AAAI 2020 (Oral)论文下载链接:[1911.09326] LCD: Learned Cross-Domain Descriptors...
代码:GitHub - hkust-vgd/lcd: [AAAI'20] LCD: Learned Cro...
Super系列:SuperPoint+SuperGlue,也代表传统特征(点)检测、描述符和匹配方法逐渐在被深度学习方法代替,其性能优于NN、GMS等。From 苏黎世联邦理工学院 & Magic Leap
论文下载链接:[1911.11763] SuperGlue: Learning Feature Matching ...
其他:
https://blog.csdn.net/YunLaowang/article/details/85121235
立体视觉入门资料整理
评估:
https://gilscvblog.com/2015/11/07/performance-evaluation-of-binary-descriptor-introducing-the-latch-descriptor/
http://www.nlpr.ia.ac.cn/fanbin/Local%20Feature%20Descriptors_VALSE14.pptx
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-5/47/2014/isprsarchives-XL-5-47-2014.pdf
https://www.researchgate.net/publication/328370491_A_Novel_Wide-Baseline_Stereo_Matching_Algorithm_Combining_MSER_and_DAISY
http://people.ucas.ac.cn/~bfan
樊彬
https://www.jiumodiary.com/ PDF搜索
Local Image Descriptor: Modern Approaches
http://www.nlpr.ia.ac.cn/fanbin/CVPR17Tutorial_LocalFeature.htm
http://www.nlpr.ia.ac.cn/fanbin/ACCV16Tutorial_LocalDescriptor.htm
http://epubs.surrey.ac.uk/812962/1/PhD-Thesis.pdf
Brown 数据集和评价指标HPatches 数据集和评价指标
https://blog.csdn.net/honyniu/category_8698831.html
[1] 基于角点的图像特征提取与匹配算法研究,薛金龙,2014.
[2] 基于局部特征的图像匹配与识别,宫明明,2014.
[3] 基于视觉信息的图像特征提取算法研究,戴金波,2014.
[4] 图像局部不变性特征与描述,王永明,王贵锦编著。
https://blog.csdn.net/zhaocj/category_2521441.html opencv源代码分析
https://blog.csdn.net/hujingshuang/category_9264206.html
https://blog.csdn.net/lhanchao/category_6430040.html
https://blog.csdn.net/aaron121211/category_6687444.html
https://blog.csdn.net/happyer88/article/details/46622657
https://blog.csdn.net/small_munich/category_7597772.html
CNN:
https://github.com/ducha-aiki
http://www.liuxiao.org/2018/10/deep-local-feature-%E6%96%87%E7%AB%A0%E6%94%B6%E9%9B%86/
https://www.epfl.ch/labs/cvlab/research/descriptors-and-keypoints/
http://cmp.felk.cvut.cz/wbs/
https://github.com/perdoch/hesaff
https://github.com/changkun/modern-cpp-tutorial
https://github.com/andyzeng/3dmatch-toolbox
https://github.com/jianxiongxiao/SFMedu
https://github.com/virtualgraham/L2-Net-Python-Keras
https://github.com/ducha-aiki/mods-light-zmq
https://github.com/DagnyT/hardnet
https://github.com/ducha-aiki/affnet
https://github.com/scape-research/SOSNet
https://github.com/yuruntian/SOSNet
https://github.com/uzh-rpg/imips_open
https://github.com/ahojnnes/local-feature-evaluation
https://github.com/axelBarroso/Key.Net
https://github.com/zju3dv/GIFT
https://github.com/lzx551402/contextdesc
https://github.com/vcg-uvic/learned-correspondence-release
https://github.com/xuyanwu/RAL-Net
https://github.com/hpatches/hpatches-benchmark
https://github.com/hpatches/hpatches-dataset
https://github.com/vcg-uvic/lf-net-release
https://github.com/lzx551402/geodesc
https://github.com/rpautrat/SuperPoint
https://github.com/MagicLeapResearch/SuperPointPretrainedNetwork
https://github.com/cvlab-epfl/LIFT
https://github.com/yoshito-n-students/affine_invariant_features
https://github.com/zhengqili/MegaDepth
https://github.com/danini/homography-from-sift-features
https://github.com/zju3dv/pvnet
持续跟进这个人:https://github.com/cumtchenchang
https://github.com/ducha-aiki/pytorch-sift
https://github.com/Tommymhz/PointNet.PointNet2.PointSIFT.Pytorch
https://github.com/hmorimitsu/sift-flow-gpu
https://github.com/pitzer/SiftGPU
https://github.com/Celebrandil/CudaSift
https://github.com/pierrepaleo/sift_pyocl
https://github.com/amusi/SIFT-GPU
https://github.com/scanner-research/SiftGPU
https://github.com/withniu/GPU-SURF-/tree/master/SURFGPU-1.1.2
https://github.com/pablofdezalc/akaze
看了看国外课程,厉害。。。。。。
https://www.coursicle.com/gatech/courses/CS/
https://www.cc.gatech.edu/classes/AY2018/cs7643_fall/
CS 4476 Computer Vision
https://www.cc.gatech.edu/~zlv30/
https://www.cc.gatech.edu/~zlv30/courses/CS4476.html
https://www.cc.gatech.edu/~zlv30/courses/
https://www.cc.gatech.edu/~zlv30/courses/proj2.html
https://github.com/joshreno/CS4476
https://github.com/wtrimmer3/cs4476-computer-vision
https://github.com/huythong267/Computer-Vision-CS4476
https://samyak-268.github.io/F18CS4476/
https://github.com/keenborder786/CS-4476-Introduction-to-Computer-Vision-Udacity-Georgia-Tech-
https://github.com/brohand/SIFT-and-SVM-Image-Classifier
CS 6476 Computer Vision
https://www.cc.gatech.edu/~hays/compvision/ -----CS6476
https://www.cc.gatech.edu/~hays/compvision/
https://www.cc.gatech.edu/~hays/compvision2017/
https://www.cc.gatech.edu/~hays/compvision/proj2/
https://github.com/Helusen/CS6476-Computer-Vision-Projects
https://github.com/liuruoruo/CS6476-Computer-Vision
https://github.com/gravaman/cv_proj2
https://github.com/gravaman/cv_proj1
CSCI 1430 Computer Vision
http://cs.brown.edu/courses/csci1430/
https://github.com/mjl13/computer-vision-csci1430
https://github.com/sebastianbertoli/csci1430
https://github.com/AurekSkyclimber/IR_Magic_Final_Submission
还有其他资源:
https://github.com/rmislam/PythonSIFT
博客+代码:
https://medium.com/@lerner98/implementing-sift-in-python-36c619df7945
https://github.com/SamL98/PySIFT
http://www.ipol.im/pub/art/2014/82/
http://www.ipol.im/pub/art/2014/82/sift_anatomy_20141201.zip
http://www.vlfeat.org/overview/sift.html
https://www.youtube.com/watch?v=mrVdGcvR8zo
https://www.youtube.com/watch?v=mrVdGcvR8zo
https://pythonawesome.com/an-implementation-of-the-sift-algorithm-in-cuda/
https://github.com/alicevision/popsift
http://www.cs.cornell.edu/courses/cs4670/2015sp/projects/pa2/
http://www.cs.cornell.edu/courses/cs4670/2015sp/
http://www.cs.cornell.edu/courses/cs4670/2015sp/projects/pa3/
https://github.com/WangDequan/cs4670
SURF:
https://github.com/luispedro/mahotas
https://mahotas.readthedocs.io/en/latest/surf.html