- Python数据分析学习笔记:字符串统计
NIKEeri
pythonpandas字符串匹配python数据分析学习
一、题目来源KagglePandas-Exercise:SummaryFunctionsandMaps章节二、题目要求描述一瓶葡萄酒时,可用的词汇有限。哪种词出现频率更高:“tropical”还是“fruity”?统计description列中这两个词的出现次数。忽略大小写。三、我的思路(使用str.contains统计总次数)tropical_count=reviews['description
- python数据分析scipy库安装与使用
范哥来了
python数据分析scipy
安装scipy库scipy是一个用于科学计算的Python库,它依赖于numpy。如果你还没有安装scipy,可以使用以下命令来安装:pipinstallscipy或者,如果你使用的是Anaconda环境,可以通过conda来安装:condainstallscipy使用scipy库scipy提供了许多用于科学计算的功能,包括统计、优化、积分、线性代数等。下面是一些常见的用法示例。1.导入scipy
- Python,C++开发上市辅导方法与实操APP
Geeker-2025
pythonc++
#上市辅导方法与实操APP-Python与C++综合解决方案下面是一个完整的上市辅导方法与实操APP的实现方案,结合Python和C++的优势,涵盖金融建模、合规分析、流程管理等多个方面:```mermaidgraphTDA[上市辅导系统]-->B[核心引擎]A-->C[应用平台]B-->D[C++金融计算引擎]B-->E[Python数据分析]B-->F[合规检查系统]C-->G[Web管理平台
- 《python 数据分析 从入门到精通》读书笔记|了解数据分析|数据分析基础知识
《python数据分析从入门到精通》读书笔记第一章:了解数据分析1.1什么是数据分析数据分析是利用数学、统计学理论与实践相结合的科学统计分析方法,对Excel数据、数据库中的数据、收集的大量数据、网页抓取的数据进行分析,从中提取有价值的信息并形成结论进行展示的过程。数据分析实际上是通过数据的规律来解决业务问题,以帮助实际工作中的管理者做出判断和决策。数据分析包括以下几个主要内容:(1)现状分析:分
- 【python数据分析】数据建模之Kmeans聚类
斑点鱼 SpotFish
python数据建模聚类python数据分析
K-means聚类:最常用的机器学习聚类算法,且为典型的基于距离的聚类算法。K均值:基于原型的、划分的距离技术,它试图发现用户指定个数(K)的簇以欧式距离作为相似度测度Kmeans聚类案例分析:make_blobs聚类数据生成器#导入模块from sklearn.cluster import KMeansfromsklearn.datasetsimportmake_blobs#创建数据x,y_tr
- Python 数据分析与机器学习入门 (一):环境搭建与核心库概览
程序员阿超的博客
Pythonpython数据分析机器学习入门教程环境搭建AnacondaJupyterNotebook
Python数据分析与机器学习入门(一):环境搭建与核心库概览本文摘要本文是Python数据分析与机器学习入门系列的第一篇,专为初学者设计。文章首先阐明了Python在数据科学领域的优势,然后手把手指导读者如何使用Anaconda搭建一个无痛、专业的开发环境,并介绍了强大的交互式工具JupyterNotebook的基本操作。最后,简要概览了NumPy、Pandas、Scikit-learn等核心库
- 物流数据行业分析(包含完整代码和流程)------python数据分析师项目Anaconda
欲梦yhd
数据分析项目大数据condapython
一、引言数据分析流程为明确目的、获取数据、数据探索和预处理、分析数据、得出结论、验证结论、结果展现。物流业务中对数据进行深入挖掘和分析的过程,旨在提高运输效率、降低运输成本、提高客户满意度,以及提高公司的竞争力。本案例物流数据分析目的:a、配送服务是否存在问题b、是否存在尚有潜力的销售区域c、商品是否存在质量问题二、详细流程1、数据预处理(数据清洗)(1)数据导入使用panda库读取数据,编码方式
- Python 数据分析实践经验与学习心得
lzzy_sj_0999
python数据分析开发语言
在当今数据驱动的时代,Python以其丰富的库和便捷的语法,成为数据分析领域的首选语言。本文将结合实际案例,分享Python数据分析的学习心得与实践经验,涵盖数据读取、清洗、分析及可视化等关键环节,希望能为大家的学习和工作提供帮助。一、数据分析必备库介绍在Python数据分析中,有几个核心库是必须掌握的,它们就像我们手中的“神兵利器”,能够高效完成各种数据分析任务。Pandas:用于数据处理和分析
- 《Python数据分析与挖掘实战》Chapter8中医证型关联规则挖掘笔记
茫茫大地真干净
机器学习Python数据挖掘
最近在学习《Python数据分析与挖掘实战》中的案例,写写自己的心得。代码分为两大部分:1.读取数据并进行聚类分析2.应用Apriori关联规则挖掘规律1.聚类部分函数分析:defprogrammer_1():datafile="C:/Users/longming/Desktop/chapter8/data/data.xls"processedfile="C:/Users/longming/Des
- python数据分析张俊红_Python数据分析实战基础 | 初识Pandas
weixin_39678531
python数据分析张俊红
这是Python数据分析实战基础的第一篇内容,主要是和Pandas来个简单的邂逅。已经熟练掌握Pandas的同学,可以加快手速滑动浏览或者直接略过本文。01重要的前言这段时间和一些做数据分析的同学闲聊,我发现数据分析技能入门阶段存在一个普遍性的问题,很多凭着兴趣入坑的同学,都能够很快熟悉Python基础语法,然后不约而同的一头扎进《利用Python进行数据分析》这本经典之中,硬着头皮啃完之后,好像
- python数据分析第9天
雪球滚滚滚
数据分析python数据挖掘
python数据分析第9天电商网站用户/订单/活动数据分析项目商业模式B2B:商家对商家(企业卖家对企业买家),交易双方都是企业,最典型的案例就是阿里巴巴,汇聚了各行业的供应商,特点是订单量一般较大。B2C:商家对个人(企业卖家对个人买家),例如:唯品会,聚美优品。B2B2C:商家对商家对个人,例如:天猫、京东。C2C:个人(卖家)对个人(买家),例如:淘宝、人人车。O2O:线上(售卖)到线下(提
- Python数据处理三剑客:NumPy、Pandas和xarray全面详解
AI开发学习分享
python数据分析pythonnumpypandas
在Python数据分析领域,NumPy、Pandas和xarray是最核心的三个库。本文将详细介绍它们的功能、用法和区别,并提供大量实用代码示例。一、NumPy:科学计算基础库NumPy是Python科学计算的基础包,提供了高性能的多维数组对象和各种计算工具。1.1基本数组操作importnumpyasnp#创建数组arr1=np.array([1,2,3,4])#一维数组arr2=np.arra
- 100个Pandas练习题:从入门到精通的实战指南
陆骊咪Durwin
100个Pandas练习题:从入门到精通的实战指南100-pandas-puzzles100datapuzzlesforpandas,rangingfromshortandsimpletosupertricky(60%complete)项目地址:https://gitcode.com/gh_mirrors/10/100-pandas-puzzles前言Pandas作为Python数据分析的核心库,
- Python 数据分析与可视化实践与python数据分析绘图表的实现,和实际的完整案例
Q_ytsup5681
python数据分析开发语言plotlymatplotlib
本文链接:Python数据分析与可视化实践与python数据分析绘图表的实现,和实际的完整案例-CSDN博客学习Python数据可视化对于数据分析和数据科学领域是至关重要的,它有着许多作用,包括但不限于以下几个方面:1.数据理解与探索:可视化使得数据更加直观,通过图表和图形,可以更容易地观察数据的分布、趋势和模式。这有助于深入理解数据,识别异常值和发现潜在的关联性。2.决策支持:数据可视化为决策提
- python数据分析 期末测验,python数据分析基础题库
Leospanb87
python开发语言人工智能
大家好,小编来为大家解答以下问题,python数据分析与应用选择题答案,python数据分析与应用课后题,现在让我们一起来看看吧!文章目录一、选择题二、填空题三、判断题四、代码分析题五、程序题一、选择题1.sum(range(0,101)的结果是()A.5050B.5151C.0D.101A2.下面哪个不是python合法的标识符()A.int32B.70XLC.selfD.__name__B3.
- python数据分析与可视化
蓝宗林
python数据分析信息可视化
一、Python数据分析概述Python是一种解释型、交互式的编程语言,其设计理念强调代码的可读性和简洁性。Python的语法结构简单,支持面向对象、过程式和函数式三种编程范式,使得Python成为一种强大而灵活的编程语言。Python数据分析主要包括数据清洗、数据探索和数据可视化三个部分。数据清洗是数据分析的重要环节,主要是对数据进行预处理,包括缺失值处理、异常值处理、数据类型转换等。数据探索则
- Python数据分析与可视化理论知识
Python数据分析概述Python数据分析依赖的两个对象表格对象实现统计分析数据预处理Matplotlib数据可视化总结Python数据分析概述数据分析的概述数据分析:用适当的统计分析方法将收集来的大量数据进行分析,将他们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。数据分析的类别:描述性数据分析、探索性数据分析
- 3648766
天浊海
pythonpycharmsklearn
1.Python数据分析介绍及环境搭建1.1python数据分析简介【了解】1.1.1python做数据分析的优势可以独立完成数据分析的各种任务功能强大,有海量的开源包(pandas,numpy…)处理海量数据效率高开源免费1.1.2常用python数据分析开源库numpy:用于数组计算pandas:分析结构化数据的工具集series:类似一维数组的对象(一行数据或者一列数据)dataframe:
- Python数据分析的基本步骤
在焦虑的沙漠里种一棵树
python数据分析开发语言
数据分析的基本步骤(基于Python)一、引言在当今数字化时代,数据已成为企业、科研机构等组织的重要资产。有效地进行数据分析可以帮助我们从海量的数据中提取有价值的信息,从而支持决策制定、优化流程、发现趋势等。Python作为一种强大的编程语言,拥有丰富的数据分析库,如Pandas、NumPy、Matplotlib等,为数据分析工作提供了极大的便利。本文将详细阐述基于Python的数据分析基本步骤,
- Python数据分析从小白到高手--数据可视化分析
王国平
信息可视化python数据分析人工智能大数据数据挖掘开发语言
Python是一种功能强大的编程语言,也是一种流行的数据分析工具,其数据可视化能力也非常强大,本章我们将结合实际案例介绍Python的主要数据可视化库,包括Matplotlib、Pyecharts、Seaborn、Plotly、Altair、NetworkX等。7.1Matplotlib7.1.1Matplotlib库简介Matplotlib是Python中最流行的数据可视化库之一,基于Numpy
- 【无痛学Python】Pandas数据载入与预处理,看这一篇就够了!
Skrrapper
Pythonpythonpandas数据库
【Python数据分析】Pandas数据载入与预处理,看这一篇就够了!对于数据分析而言,数据大部分来源于外部数据,例如CSV文件、Excel文件以及数据库文件等等。我们要把各种格式的数据转换成Pandas可处理的Series和DataFrame数据格式,进行完数据分析与处理之后再重新存储到外部文件中,这就是Pandas的数据载入与预处理。数据载入其实对于读/写文件和存储文件来说,不同类型文件的函数
- Python 数据分析:NumPy 库的使用
小张在编程
python数据分析numpy
引言:为什么说NumPy是Python数据分析的“基石”?在Python数据分析领域,有这样一句话:“没有NumPy,就没有Pandas、Matplotlib和Scikit-learn”。作为Python科学计算的核心库,NumPy(NumericalPython)凭借高效的多维数组(ndarray)和向量化运算能力,成为了所有数据分析工具的底层支撑。无论是处理百万级别的销售数据,还是实现复杂的机
- python数据分析期末_Python数据分析期末作业
xander Sun
python数据分析期末
Python数据分析期末作业(50分)一、名称:国民经济核算季度数据分析可视化处理;二、需求:根据文件《国民经济核算季度数据.npz》提供的各年中每个季度的数据,完成如下操作处理:1、绘制直方图:(1)在一个画板中绘制2000年、2017年第一季度国民生产总值产业构成分布、行业构成分布直方图,其效果形式如下;(2)要求:?每个图形的标题、轴标签、刻度、图形颜色、柱形宽度与效果图中的完全一致;?在每
- 1、Python数据分析:数据的采集
数字化与智能化
Python数据分析python数据分析python数据的采集
一、数据的采集数据采集是系统性工程,需平衡技术、成本与合规性。在实际操作中,建议从最小可行采集方案(MVP)起步,逐步迭代优化,同时建立数据治理规范,确保长期可持续性。1.数据采集的核心目标全面性:覆盖关键维度,避免信息缺失。准确性:确保数据真实反映现实,减少误差。时效性:数据需满足实时或近实时需求(如金融交易监控)。合规性:遵守隐私保护(如GDPR)、数据安全等法律法规。2.数据来源分类(1)第
- 如何进行Python数据分析?正确的“入门之路”三部曲
白帽黑客麦叔
Pythonpython数据分析开发语言职场和发展Python教程
前言Python是一种面向对象、直译式计算机程序设计语言,由于他简单、易学、免费开源、可移植性、可扩展性等特点,Python又被称之为胶水语言。下图为主要程序语言近年来的流行趋势,Python受欢迎程度扶摇直上。由于Python拥有非常丰富的库,使其在数据分析领域也有广泛的应用。一、为什么要用Python做数据分析?在我看来,大概有3大理由。广度:各行各业都有自己的商业场景,每一个行业都需要使用数
- 如何进行Python数据分析?正确的“入门之路”三部曲!_python医学数据分析入门
2401_84301948
程序员网络安全学习面试
给大家的福利零基础入门对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。同时每个成长路线对应的板块都有配套的视频提供:因篇幅有限,仅展示部分资料网络安全面试题绿盟护网行动还有大家最喜欢的黑客技术网络安全源码合集+工具包所有资料共282G,朋友们如果有需要全套《网络安全入门+黑客进阶学习资源包》,可以扫描下方二维码
- 【数据分析】第四章 pandas简介(1)
神秘敲码人
数据分析pythonpandas
4.1pandas:Python数据分析库pandas是一个专门为数据分析量身定制的开源Python库。在当今的Python数据科学界,无论是专业研究还是进行统计分析和决策,pandas都是每一位数据专业人士不可或缺的基础工具。这个强大的库由WesMcKinney于2008年开始设计和开发。到了2012年,他的同事SienChang也加入了开发团队。正是他们二人的共同努力,造就了Python社区中
- 一篇文章搞定Python数据分析用到的所有库
花小姐的春天
跟着花姐学Pythonpython数据分析开发语言0基础学PythonPython教程Python基础教程数据挖掘
想做数据分析,却不知道从哪里入手?别担心,花姐今天就来告诉你,想搞定数据分析,掌握以下这些Python库就够了!准备好了吗?跟着我一起看看这些实用的库吧!1.数据处理库在数据分析的世界里,数据处理是最基础也是最重要的部分。如果你想要做一份高质量的报告,或者让数据“乖乖”地为你服务,首先必须得把数据弄清楚、整理好。今天,我们就从四个强大的数据处理库说起——pandas、numpy、dask和modi
- Python编码系列—Python数据分析:NumPy与Pandas的实战应用
学步_技术
Python编码python数据分析numpy
欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中一起航行,共同成长,探索技术的无限可能。探索专栏:学步_技术的首页——持续学习,不断进步,让学习成为我们共同的习惯,让总结成为我们前进的动力。技术导航:人工智能:深入探讨人工智能领域核心技术。自动驾驶:分享自动
- Python, 数据分析, 电商运营, 用户行为
detayun
Pythonpython数据分析开发语言
在电商行业日益内卷的今天,如何通过用户行为数据挖掘商业价值已成为企业制胜的关键。本文将结合Python数据分析工具链,从实战角度解读电商用户行为分析的全流程,并提供可直接复用的代码框架。一、为什么需要用户行为分析?电商用户行为数据是隐藏的"商业密码本",通过分析可实现:精准营销:识别高价值用户群体(如"双11"前浏览未购买用户)体验优化:发现购物车弃置率高的环节(如支付流程卡点)库存优化:基于销量
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持