使用spark 对文本分词统计

package com.snailteam.simple_project

import java.sql.DriverManager
import scala.collection.mutable.ArrayBuffer
import org.apache.spark.SparkContext
import org.apache.spark.rdd.JdbcRDD
import org.apache.spark.rdd.RDD.rddToPairRDDFunctions
import com.huaban.analysis.jieba.JiebaSegmenter
import com.huaban.analysis.jieba.JiebaSegmenter.SegMode
import scala.collection.JavaConversions

/**
 * 使用spark集群计算的时候,将jieba的类都  implements Serializable
 *
 * ./bin/spark-submit  --class com.snailteam.simple_project.App --jars lib/mysql-connector-java-5.1.18.jar
 *
 *
 *
 */
object App {
  val url = "xx"
  val username = "xx"
  val password = "xx"
  def main(args: Array[String]): Unit = {
    //    val conf = new SparkConf()
    //      .setMaster("spark://192.168.56.102:7077")
    //      .setAppName("mysql_test")
    //    val sc = new SparkContext(conf)

    val sc = new SparkContext("local", "mysql")
    val seg = new JiebaSegmenter;
   val rdd = new JdbcRDD(  
      sc,  
      () => {  
        Class.forName("com.mysql.jdbc.Driver").newInstance()  
        DriverManager.getConnection(url, username, password)  
      },  
      "select * from book  limit ?,? ",  
      1, 10000000, 4)  
    var result = rdd.flatMap { x =>  
      {  
        var ts = seg.process(x(8).toString(), SegMode.SEARCH);  
        for(t<-JavaConversions.asScalaBuffer(ts)  if (t.word.getTokenType.contains("v") || t.word.getTokenType.contains("n") || t.word.getTokenType.contains("a")) ) yield t.word.getToken;  
      }  
    }.map { word => (word, 1) }.reduceByKey(_ + _).sortBy(f=>{f._2}, false).take(100);  
    result.foreach(println)
    sc.stop()  
  }
}

 

你可能感兴趣的:(使用spark 对文本分词统计)