- 使用matlab的热门问题
七十二五
值得关注matlab开发语言青少年编程算法经验分享
MATLAB广泛应用于科学计算、数据分析、信号处理、图像处理、机器学习等多个领域,因此热门问题也涵盖了这些方面。以下是一些可能被认为当前最热门的MATLAB问题:深度学习与神经网络:如何使用MATLAB的深度学习工具箱(DeepLearningToolbox)来构建和训练神经网络?如何利用MATLAB进行图像识别、语音识别或自然语言处理等深度学习应用?数据分析与可视化:如何使用MATLAB进行大数
- 深度学习应用 - 大规模深度学习篇
绎岚科技
深度学习算法机器学习深度学习人工智能算法机器学习
序言在科技日新月异的今天,人工智能(AI\text{AI}AI)已成为推动社会进步与产业升级的关键力量。其中,深度学习作为AI领域的璀璨明珠,凭借其强大的数据处理能力和特征学习能力,正引领着一场前所未有的智能革命。大规模深度学习,作为深度学习技术的前沿阵地,更是将这一技术的潜力发挥到了极致。它不仅能够处理海量数据,还能在复杂场景中挖掘出更深层次的规律和知识,为科学研究、工业制造、医疗健康、智慧城市
- nvidia cuda镜像说明
九品神元师
linux人工智能python运维
nvidia/cuda:11.1.1-cudnn8-runtime:这是一个运行时镜像,适用于在已安装CUDA11.1.1和cuDNN8的环境中运行深度学习应用程序。该镜像包含运行时所需的库和工具,但不包含开发工具或头文件。nvidia/cuda:11.1.1-cudnn8-devel:这是一个开发镜像,适用于在已安装CUDA11.1.1和cuDNN8的环境中进行深度学习模型的开发。该镜像包含了编
- 在STM32上实现嵌入式人工智能应用
嵌入式详谈
stm32人工智能嵌入式硬件
引言随着微控制器的计算能力不断增强,人工智能(AI)开始在嵌入式系统中扮演越来越重要的角色。STM32微控制器由于其高性能和低功耗的特性,非常适合部署轻量级AI模型。本文将探讨如何在STM32平台上实现深度学习应用,特别是利用STM32Cube.AI工具链将训练好的神经网络模型部署到STM32设备上。环境准备硬件选择:STM32F746GDiscoverykit,具备足够的计算资源和内存支持复杂模
- 遗传算法与深度学习实战(1)——进化深度学习
盼小辉丶
遗传算法与深度学习实战深度学习人工智能遗传算法
遗传算法与深度学习实战(1)——进化深度学习0.前言1.进化深度学习1.1进化深度学习简介1.2进化计算简介2.进化深度学习应用场景3.深度学习优化3.1优化网络体系结构4.通过自动机器学习进行优化4.1自动机器学习简介4.2AutoML工具5.进化深度学习应用5.1模型选择:权重搜索5.2模型架构:架构优化5.3超参数调整/优化5.4验证和损失函数优化5.5增强拓扑的神经进化小结系列链接0.前言
- OpenCV DNN 活体检测项目环境配置等各阶段tips
十橙
MachineLearningOpenCVopencvdnn人工智能活体检测
date:2020-09-2214:53资料来源《OpenCV深度学习应用与性能优化实践》第八章。在复现这个项目的时候发现一些可以调整的小tips。环境配置阶段使用conda创建python工作环境时,注释掉requirems.txt里的opencv-python-inference-engine==4.1.2.1,安装OpenVINO时包含这个了,如果使用requirements里的版本,ims
- PyTorch vs TensorFlow:谁拥有更多预训练深度学习模型?
suoge223
机器学习实用指南深度学习pytorchtensorflow
众所周知,访问预先训练的深度学习模型对于当代深度学习应用至关重要。随着最先进的模型变得越来越大,达到数万亿个参数,在许多领域,尤其是自动语音识别等领域,从头开始训练高级模型不再有意义。鉴于预训练深度学习模型的重要性,哪个深度学习框架(PyTorch或TensorFlow)为用户提供更多此类模型是一个需要回答的重要问题。在本文中,我们将定量地探讨这个主题,以便您可以随时了解深度学习领域的当前状态。为
- 图卷积网络(Graph Convolution Network,GCN)
唯余木叶下弦声
深度学习深度学习人工智能
目录一、前言二、GCN原理三、GCN用于节点分类四、总结一、前言在图神经网络出现之前,一般的神经网络只能对常规的欧式数据进行处理,其特点就是节点有固定的排列规则和顺序,如2维网格和1维序列。近几年来,将深度学习应用到处理和图结构数据相关的任务中越来越受到人们的关注。图神经网络的出现使其在上述任务中取得了重大突破,比如在社交网络、自然语言处理、计算机视觉甚至生命科学等领域得到了非常广泛的应用。图神经
- 用树莓派4b构建深度学习应用(九)Yolo篇
bluishfish
前言上一篇我们在树莓派上安装了OpenVINO的环境,并跑了几个官方demo,作为关键点的模型转换工作,以各个版本的yolo实现为例,在这篇做一下实现。imageimage目标检测是人工智能应用比较成熟的领域,不仅要能够识别出图片的目标,还要定位其位置,在自动驾驶方面会是一个基础的场景。一般分为两大类别,一类是two-stage的,基于R-CNN,FastR-CNN,FasterR-CNN等等,先
- [C#]C# winform部署yolov8目标检测的openvino模型
FL1623863129
C#c#YOLOopenvino
【官方框架地址】https://github.com/ultralytics/ultralytics【openvino介绍】OpenVINO(OpenVisualInference&NeuralNetworkOptimization)是由Intel推出的,用于加速深度学习模型推理的工具套件。它旨在提高计算机视觉和深度学习应用的性能,特别是在边缘计算和实时推理场景中。OpenVINO的核心功能包括对
- yolov8实战第三天——yolov8TensorRT部署(python推理)(保姆教学)
学术菜鸟小晨
yolov8YOLOtensorRT
在上一篇中我们使用自己的数据集训练了一个yolov8检测模型,best.py。yolov8实战第一天——yolov8部署并训练自己的数据集(保姆式教程)-CSDN博客yolov8实战第二天——yolov8训练结果分析(保姆式解读)-CSDN博客接下要对best.py进行TensorRT优化并部署。TensorRT是一种高性能深度学习推理优化器和运行时加速库,可以为深度学习应用提供低延迟、高吞吐率的
- mobileNet
寒寒_21b7
MobileNetV11、为什么要设计mobilenet?为移动端和嵌入式端深度学习应用设计的网络,使得在cpu上也能达到理想的速度要求。2、mobilenet的结构image.png3、mobilenet网络的特点。轻量化放弃pooling直接采用stride=2进行卷积运算4、创新点1:depthwiseseparableconvolutionsimage.png标准卷积:图(a):特点是卷积
- 用树莓派4b构建深度学习应用(五)Tersorflow篇
bluishfish
前言上回我们把pytorch的环境安装好了,这篇我们建立一下tensorflow和keras的开发环境。imageimage不得不说,相对于pytorch来说,tensorflow对各个系统的支持真的很完善,无论是各种平台还是各个版本都有对应的预编译安装包,官方文档也很详细(但不代表没有坑image,详见下文),是工程化不错的选择。而pytorch代码更pythonic,所以最新的模型和算法很多都
- 一次告诉你地震断层识别历程回顾——最后详细介绍深度学习应用
科技州与数据州
前面课程给大家讲了:在油气藏勘测领域,断层和裂缝网络的几何形态对油气成藏和运移起着重要作用,因此,对其进行识别是必要的,也是值得的。断层识别这么重要,具体是怎样做的呢?01人工检测断层断层识别最初是由经验丰富的解释员根据断层局部特征,结合整体工区的地质结构和应力走向等情况,人工在剖面图上绘制断层线,再进一步构造断层面。这种人工的方式缺点比较明显:一是效率低。受限于解释员的工作效率,对于大规模工区处
- 用树莓派4b构建深度学习应用(一)硬件篇
bluishfish
前言最近树莓派4b发布了8gb的版本,这么大的内存用在嵌入式设备上,简直是为了深度计算而生,果断入手了一块,遂开启了一轮踩坑之旅。为了避免重复网上已有的树莓派教程,后续系列文章,我尽量以2020年为基准,先打造一个最新最稳定的软硬件开发环境,再在其上构建AI应用。比如选择构建OpenCV4.4,pyTorch1.6和1.7,Tensorflow2.1,然后在上面跑yolov5应用,用intelNC
- 大数据深度学习朴素贝叶斯深度解码:从原理到深度学习应用
星川皆无恙
机器学习与深度学习大数据人工智能大数据深度学习人工智能决策树算法机器学习
大数据深度学习朴素贝叶斯深度解码:从原理到深度学习应用文章目录大数据深度学习朴素贝叶斯深度解码:从原理到深度学习应用一、简介贝叶斯定理的历史和重要性定义例子朴素贝叶斯分类器的应用场景定义例子常见应用场景二、贝叶斯定理基础条件概率定义例子贝叶斯公式定义例子三、朴素贝叶斯算法原理基本构成定义例子分类过程定义例子不同变体定义例子四、朴素贝叶斯的种类高斯朴素贝叶斯(GaussianNaiveBayes)定
- 英特尔深度相机D455实现YOLOv5+deeepsort行人车辆测速、测距、追踪
code2035
yolo从入门到精通Deepsort机器视觉从入门到精通YOLOdeepsort结构光
目录1,YOLOv5+deepsort原理简介2,项目介绍3,结果展示编辑IntelRealSenseD435、D455等D4系列:IntelD4系列深度相机是由英特尔(Intel)公司推出的一款深度感知摄像头,专为实现计算机视觉和深度学习应用而设计。这款相机使用了英特尔的深度感知技术,结合了摄像头和红外(IR)传感器,可以提供高质量的深度图像和RGB彩色图像,为开发者提供了丰富的数据源,用于各种
- 在图像处理中应用深度学习技术
小白学视觉
网络神经网络算法大数据编程语言
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达工业应用中FPGA上的神经元网络(CNN)深度学习应用凭借其在识别应用中超高的预测准确率,在图像处理领域获得了极大关注,这势必将提升现有图像处理系统的性能并开创新的应用领域。利用卷积神经网络(ConvolutionalNeuralNetwork,CNN)等深层神经网络的解决方案,可以逐渐取代基于算法说明的传统图像处理工作。尽管图
- 序列生成模型(一):序列概率模型
QomolangmaH
深度学习深度学习
文章目录前言1.序列数据2.序列数据的潜在规律3.序列概率模型的两个基本问题一、序列概率模型1.理论基础序列的概率分解自回归生成模型2.序列生成前言 深度学习在处理序列数据方面取得了巨大的成功,尤其是在自然语言处理领域。序列数据可以是文本、声音、视频、DNA序列等,在深度学习中,我们可以将它们看作是符合一定规则的序列。1.序列数据 序列数据在深度学习应用中非常常见,它们是按照时间顺序或者其他顺
- 再看经典召回算法
DeepRec
在学习和应用推荐算法的过程中,发现越来越多的文章在描述深度学习应用在推荐系统上的方法,不可否认深度学习的发展给推荐系统带来了巨大的进步,但是传统的经典算法仍然是非常值得学习的,毕竟可以作为一个比较高的baseline,同时也是快速上手和搭建推荐系统的好方法,因此这篇文章就主要总结和梳理一下传统的经典召回算法。一般经典的召回方法即采用多路召回的方式,如下图所示。通俗的来说多路召回就是从不同的角度采用
- ubuntu22.04安装 nvidia-cudnn
MonkeyKing_sunyuhua
工具使用ssh运维
nvidia-cudnn是NVIDIACUDA深度神经网络库(CUDADeepNeuralNetworklibrary)的缩写。这是一个由NVIDIA提供的库,用于加速深度学习应用程序。它包含了针对深度神经网络中常用操作(如卷积、池化、归一化、激活层等)的高度优化的实现。这些操作都是为了在NVIDIA的GPU上进行高效计算而特别优化的,从而大大加快深度学习模型的训练和推断速度。cuDNN是NVID
- 深度学习项目基于Tensorflow卷积神经网络人脸年龄预测系统
雅致教育
python计算机毕业设计深度学习tensorflowcnn
欢迎大家点赞、收藏、关注、评论啦,由于篇幅有限,只展示了部分核心代码。文章目录一项目简介二、功能三、系统四.总结一项目简介 系统介绍基于Tensorflow的卷积神经网络人脸年龄预测系统是一种先进的深度学习应用,能够通过对大量人脸图像的学习和训练,实现准确的年龄预测。该系统的主要组成部分包括人脸检测、图像预处理、卷积神经网络模型训练和预测以及后处理等。系统工作原理人脸检测:首先,系统通过预训练的
- 【ArcGIS Pro微课1000例】0046:深度学习--汽车检测
刘一哥GIS
《ArcGISarcgis深度学习汽车ArcGISpro人工智能
本实验讲述ArcGISPro中人工智能深度学习应用之–汽车检测。文章目录一、学习效果二、工具介绍三、案例实现四、注意事项一、学习效果采用深度学习工具,可以很快速精准的识别汽车。案例一:案例二:下面讲解GIS软件实现流程。二、工具介绍该案例演示的是ArcGISPro中深度学习工具中的【使用深度学习检测对象】,应用的模型是汽车检测模型CarDetection_USA.dlpk,大家可以从配套的实验数据
- Linux系统配置深度学习环境之cudnn安装
番茄小能手
Linuxlinux深度学习运维
前言一个针对深度学习应用优化的GPU加速库。它提供了高性能、高可靠性的加速算法,旨在加速深度神经网络模型的训练和推理过程。cuDNN提供了一系列优化的基本算法和函数,包括卷积、池化、规范化、激活函数等,以及针对深度学习任务的高级功能,如循环神经网络(RNN)的支持。这些算法和函数充分利用了NVIDIAGPU的并行计算能力,提供了显著的性能加速。cuDNN不仅可以用于传统的深度学习框架(如Tenso
- 如何把Tensorflow模型转换成TFLite模型
dvlee1024
深度学习迅猛发展,目前已经可以移植到移动端使用了,TensorFlow推出的TensorFlowLite就是一款把深度学习应用到移动端的框架技术。使用TensorFlowLite需要tflite文件模型,这个模型可以由TensorFlow训练的模型转换而成。所以首先需要知道如何保存训练好的TensorFlow模型。一般有这几种保存形式:CheckpointsHDF5SavedModel等保存与读取
- 【部署运维】docker:入门到进阶
资料加载中
运维docker容器
0前言部署运维博客系列一共有三篇:拥抱开源,将工作中的经验分享出来,尽量避免新手踩坑。【部署运维】docker:入门到进阶【部署运维】kubernetes:容器集群管理掌握这些就够了【部署运维】python+redis+celery+docker:实时异步访问的深度学习应用实战1docker的原理和优势1.1docker的原理招聘要求中的提到的容器化技术指的就是docker相关的东西。确切地说,容
- 深度学习应用:学习XOR
心水
《深度学习》这本书提到一个深度学习实例,挺有意思的。XOR函数(异或逻辑)是两个二进制x1和x2的运算,x1和x2相同,则输出0,x1和x2不同则输出1。XOR函数提供了我们想要学习的目标函数y=f'(x),我们的模型给出了一个函数y=f(x;θ),并且我们的学习算法会不断调整参数θ来使f尽可能接近f'。XOR函数一共就4个数据:1.(0,0)=02.(1,1)=03.(1,0)=14.(0,1)
- 周志华教授专著《集成学习:基础与算法》上市,豆瓣满分森林书破解AI实践难题...
夕小瑶
数据挖掘算法人工智能机器学习编程语言
近年来,机器学习技术的快速发展推动了语音、自然语言处理、机器视觉等多个领域获得巨大进步,也带动了人工智能相关产业的蓬勃发展。回顾机器学习最近30年的发展历程,各种学习方法推陈出新、不断演进。但是,在此历程中,通过构建并结合多个学习器来完成学习任务的集成学习方法,始终是提升学习效果的重要手段,成为机器学习领域的“常青树”,受到学术界和产业界的广泛关注。在这个深度学习应用取得巨大成功的当下,我们无法忽
- 送书|周志华教授专著《集成学习:基础与算法》上市,豆瓣满分森林书破解AI实践难题...
文文学霸
数据挖掘算法人工智能机器学习编程语言
近年来,机器学习技术的快速发展推动了语音、自然语言处理、机器视觉等多个领域获得巨大进步,也带动了人工智能相关产业的蓬勃发展。回顾机器学习最近30年的发展历程,各种学习方法推陈出新、不断演进。但是,在此历程中,通过构建并结合多个学习器来完成学习任务的集成学习方法,始终是提升学习效果的重要手段,成为机器学习领域的“常青树”,受到学术界和产业界的广泛关注。在这个深度学习应用取得巨大成功的当下,我们无法忽
- 利用NVIDIA DALI读取视频帧
牧羊女说
Python图像处理计算机视觉
1.NVIDIADALI简介NVIDIADALI全称是NVIDIADataLoadingLibrary,是一个用GPU加速的数据加载和预处理库,可用于图像、视频和语音数据的加载和处理,从而为深度学习的训练和推理加速。NVIDIADALI库的出发点是,深度学习应用中复杂的数据处理pipeline,如数据加载、解码、裁剪、Resize等功能,在CPU上处理已经成为瓶颈,限制了深度学习训练和推理的性能及
- 解读Servlet原理篇二---GenericServlet与HttpServlet
周凡杨
javaHttpServlet源理GenericService源码
在上一篇《解读Servlet原理篇一》中提到,要实现javax.servlet.Servlet接口(即写自己的Servlet应用),你可以写一个继承自javax.servlet.GenericServletr的generic Servlet ,也可以写一个继承自java.servlet.http.HttpServlet的HTTP Servlet(这就是为什么我们自定义的Servlet通常是exte
- MySQL性能优化
bijian1013
数据库mysql
性能优化是通过某些有效的方法来提高MySQL的运行速度,减少占用的磁盘空间。性能优化包含很多方面,例如优化查询速度,优化更新速度和优化MySQL服务器等。本文介绍方法的主要有:
a.优化查询
b.优化数据库结构
- ThreadPool定时重试
dai_lm
javaThreadPoolthreadtimertimertask
项目需要当某事件触发时,执行http请求任务,失败时需要有重试机制,并根据失败次数的增加,重试间隔也相应增加,任务可能并发。
由于是耗时任务,首先考虑的就是用线程来实现,并且为了节约资源,因而选择线程池。
为了解决不定间隔的重试,选择Timer和TimerTask来完成
package threadpool;
public class ThreadPoolTest {
- Oracle 查看数据库的连接情况
周凡杨
sqloracle 连接
首先要说的是,不同版本数据库提供的系统表会有不同,你可以根据数据字典查看该版本数据库所提供的表。
select * from dict where table_name like '%SESSION%';
就可以查出一些表,然后根据这些表就可以获得会话信息
select sid,serial#,status,username,schemaname,osuser,terminal,ma
- 类的继承
朱辉辉33
java
类的继承可以提高代码的重用行,减少冗余代码;还能提高代码的扩展性。Java继承的关键字是extends
格式:public class 类名(子类)extends 类名(父类){ }
子类可以继承到父类所有的属性和普通方法,但不能继承构造方法。且子类可以直接使用父类的public和
protected属性,但要使用private属性仍需通过调用。
子类的方法可以重写,但必须和父类的返回值类
- android 悬浮窗特效
肆无忌惮_
android
最近在开发项目的时候需要做一个悬浮层的动画,类似于支付宝掉钱动画。但是区别在于,需求是浮出一个窗口,之后边缩放边位移至屏幕右下角标签处。效果图如下:
一开始考虑用自定义View来做。后来发现开线程让其移动很卡,ListView+动画也没法精确定位到目标点。
后来想利用Dialog的dismiss动画来完成。
自定义一个Dialog后,在styl
- hadoop伪分布式搭建
林鹤霄
hadoop
要修改4个文件 1: vim hadoop-env.sh 第九行 2: vim core-site.xml <configuration> &n
- gdb调试命令
aigo
gdb
原文:http://blog.csdn.net/hanchaoman/article/details/5517362
一、GDB常用命令简介
r run 运行.程序还没有运行前使用 c cuntinue 
- Socket编程的HelloWorld实例
alleni123
socket
public class Client
{
public static void main(String[] args)
{
Client c=new Client();
c.receiveMessage();
}
public void receiveMessage(){
Socket s=null;
BufferedRea
- 线程同步和异步
百合不是茶
线程同步异步
多线程和同步 : 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B依言执行,再将结果给A;A再继续操作。 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回,同时其它线程也不能调用这个方法
多线程和异步:多线程可以做不同的事情,涉及到线程通知
&
- JSP中文乱码分析
bijian1013
javajsp中文乱码
在JSP的开发过程中,经常出现中文乱码的问题。
首先了解一下Java中文问题的由来:
Java的内核和class文件是基于unicode的,这使Java程序具有良好的跨平台性,但也带来了一些中文乱码问题的麻烦。原因主要有两方面,
- js实现页面跳转重定向的几种方式
bijian1013
JavaScript重定向
js实现页面跳转重定向有如下几种方式:
一.window.location.href
<script language="javascript"type="text/javascript">
window.location.href="http://www.baidu.c
- 【Struts2三】Struts2 Action转发类型
bit1129
struts2
在【Struts2一】 Struts Hello World http://bit1129.iteye.com/blog/2109365中配置了一个简单的Action,配置如下
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configurat
- 【HBase十一】Java API操作HBase
bit1129
hbase
Admin类的主要方法注释:
1. 创建表
/**
* Creates a new table. Synchronous operation.
*
* @param desc table descriptor for table
* @throws IllegalArgumentException if the table name is res
- nginx gzip
ronin47
nginx gzip
Nginx GZip 压缩
Nginx GZip 模块文档详见:http://wiki.nginx.org/HttpGzipModule
常用配置片段如下:
gzip on; gzip_comp_level 2; # 压缩比例,比例越大,压缩时间越长。默认是1 gzip_types text/css text/javascript; # 哪些文件可以被压缩 gzip_disable &q
- java-7.微软亚院之编程判断俩个链表是否相交 给出俩个单向链表的头指针,比如 h1 , h2 ,判断这俩个链表是否相交
bylijinnan
java
public class LinkListTest {
/**
* we deal with two main missions:
*
* A.
* 1.we create two joined-List(both have no loop)
* 2.whether list1 and list2 join
* 3.print the join
- Spring源码学习-JdbcTemplate batchUpdate批量操作
bylijinnan
javaspring
Spring JdbcTemplate的batch操作最后还是利用了JDBC提供的方法,Spring只是做了一下改造和封装
JDBC的batch操作:
String sql = "INSERT INTO CUSTOMER " +
"(CUST_ID, NAME, AGE) VALUES (?, ?, ?)";
- [JWFD开源工作流]大规模拓扑矩阵存储结构最新进展
comsci
工作流
生成和创建类已经完成,构造一个100万个元素的矩阵模型,存储空间只有11M大,请大家参考我在博客园上面的文档"构造下一代工作流存储结构的尝试",更加相信的设计和代码将陆续推出.........
竞争对手的能力也很强.......,我相信..你们一定能够先于我们推出大规模拓扑扫描和分析系统的....
- base64编码和url编码
cuityang
base64url
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.io.UnsupportedEncodingException;
- web应用集群Session保持
dalan_123
session
关于使用 memcached 或redis 存储 session ,以及使用 terracotta 服务器共享。建议使用 redis,不仅仅因为它可以将缓存的内容持久化,还因为它支持的单个对象比较大,而且数据类型丰富,不只是缓存 session,还可以做其他用途,一举几得啊。1、使用 filter 方法存储这种方法比较推荐,因为它的服务器使用范围比较多,不仅限于tomcat ,而且实现的原理比较简
- Yii 框架里数据库操作详解-[增加、查询、更新、删除的方法 'AR模式']
dcj3sjt126com
数据库
public function getMinLimit () { $sql = "..."; $result = yii::app()->db->createCo
- solr StatsComponent(聚合统计)
eksliang
solr聚合查询solr stats
StatsComponent
转载请出自出处:http://eksliang.iteye.com/blog/2169134
http://eksliang.iteye.com/ 一、概述
Solr可以利用StatsComponent 实现数据库的聚合统计查询,也就是min、max、avg、count、sum的功能
二、参数
- 百度一道面试题
greemranqq
位运算百度面试寻找奇数算法bitmap 算法
那天看朋友提了一个百度面试的题目:怎么找出{1,1,2,3,3,4,4,4,5,5,5,5} 找出出现次数为奇数的数字.
我这里复制的是原话,当然顺序是不一定的,很多拿到题目第一反应就是用map,当然可以解决,但是效率不高。
还有人觉得应该用算法xxx,我是没想到用啥算法好...!
还有觉得应该先排序...
还有觉
- Spring之在开发中使用SpringJDBC
ihuning
spring
在实际开发中使用SpringJDBC有两种方式:
1. 在Dao中添加属性JdbcTemplate并用Spring注入;
JdbcTemplate类被设计成为线程安全的,所以可以在IOC 容器中声明它的单个实例,并将这个实例注入到所有的 DAO 实例中。JdbcTemplate也利用了Java 1.5 的特定(自动装箱,泛型,可变长度
- JSON API 1.0 核心开发者自述 | 你所不知道的那些技术细节
justjavac
json
2013年5月,Yehuda Katz 完成了JSON API(英文,中文) 技术规范的初稿。事情就发生在 RailsConf 之后,在那次会议上他和 Steve Klabnik 就 JSON 雏形的技术细节相聊甚欢。在沟通单一 Rails 服务器库—— ActiveModel::Serializers 和单一 JavaScript 客户端库——&
- 网站项目建设流程概述
macroli
工作
一.概念
网站项目管理就是根据特定的规范、在预算范围内、按时完成的网站开发任务。
二.需求分析
项目立项
我们接到客户的业务咨询,经过双方不断的接洽和了解,并通过基本的可行性讨论够,初步达成制作协议,这时就需要将项目立项。较好的做法是成立一个专门的项目小组,小组成员包括:项目经理,网页设计,程序员,测试员,编辑/文档等必须人员。项目实行项目经理制。
客户的需求说明书
第一步是需
- AngularJs 三目运算 表达式判断
qiaolevip
每天进步一点点学习永无止境众观千象AngularJS
事件回顾:由于需要修改同一个模板,里面包含2个不同的内容,第一个里面使用的时间差和第二个里面名称不一样,其他过滤器,内容都大同小异。希望杜绝If这样比较傻的来判断if-show or not,继续追究其源码。
var b = "{{",
a = "}}";
this.startSymbol = function(a) {
- Spark算子:统计RDD分区中的元素及数量
superlxw1234
sparkspark算子Spark RDD分区元素
关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量
Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。
可以利用RDD的mapPartitionsWithInd
- Spring 3.2.x将于2016年12月31日停止支持
wiselyman
Spring 3
Spring 团队公布在2016年12月31日停止对Spring Framework 3.2.x(包含tomcat 6.x)的支持。在此之前spring团队将持续发布3.2.x的维护版本。
请大家及时准备及时升级到Spring
- fis纯前端解决方案fis-pure
zccst
JavaScript
作者:zccst
FIS通过插件扩展可以完美的支持模块化的前端开发方案,我们通过FIS的二次封装能力,封装了一个功能完备的纯前端模块化方案pure。
1,fis-pure的安装
$ fis install -g fis-pure
$ pure -v
0.1.4
2,下载demo到本地
git clone https://github.com/hefangshi/f