摘自:http://blog.csdn.net/saloon_yuan/article/details/7519852
初步了解完PCI总线标准之后,我们接下来正式开始PCIe设备的漫游之旅。从我们按下PC的电源按钮开始,BIOS就接管系统控制权开始工作,它会先进行一些内存和设备的初始化工作(当然,也包括我们的PCI设备),由于商业上的原因,Phoenix等厂商的BIOS代码需要授权协议,在此,我们以另外一个款开源BIOS(openbios)为例,来剖析BIOS中,我们的PCIe设备是如何被找到以及初始化的。
PCI设备的扫描是基于深度优先搜索算法(DFS:Depth First Search),也就是说,下级分支最多的PCI桥将最先完成其子设备的扫描。下面我们以图片来具体说明,BIOS是如何一步步完成PCI 设备扫描的。
第一步:
PCI Host 主桥扫描Bus 0上的设备(在一个处理器系统中,一般将与HOST主桥直接相连的PCI总线被命名为PCI Bus 0),系统首先会忽略Bus 0上的D1,D2等不会挂接PCI桥的设备,主桥发现Bridge 1后,将Bridge1 下面的PCI Bus定为 Bus 1,系统将初始化Bridge 1的配置空间,并将该桥的Primary Bus Number 和 Secondary Bus Number寄存器分别设置成0和1,以表明Bridge1 的上游总线是0,下游总线是1,由于还无法确定Bridge1下挂载设备的具体情况,系统先暂时将Subordinate Bus Number设为0xFF。如下图所示:
第二步:
系统开始扫描Bus 1,将会发现Bridge 2。系统将Bridge 2下面的PCI Bus定为Bus 2,并将该桥的Primary Bus Number 和 Secondary Bus Number寄存器分别设置成1和2,和上一步一样暂时把Bridge 2 的Subordinate Bus Number设为0xFF。如下图所示:
第三步:
系统继续扫描Bus 2,将会发现Bridge 4。系统将Bridge 4下面的PCI Bus定为Bus 3,并将该桥的Primary Bus Number 和 Secondary Bus Number寄存器分别设置成2和3,此后
系统继续扫描后发现Bus 3 下面已经没有任何Bridge了,意味着该PCI总线下已经没有任何挂载下游总线了,因此Bridge 4的Subordinate Bus Number的值已经可以确定为3了。
如下图所示:
第四步:
完成Bus 3的扫描后,系统返回到Bus 2继续扫描,发现Bus 2下面已经没有其他Bridge了。此时Bridge 2的Subordinate Bus Number的值也已经可以确定为3了。如下图所示:
第五步:
完成Bus 2的扫描后,系统返回到Bus1继续扫描,会发现Bridge 3,系统将Bridge 3下面的PCI Bus定为Bus 4。并将Bridge 4的Primary Bus Number 和 Secondary Bus Number寄存器分别设置成1和4,此后系统继续扫描后发现Bus 4 下面已经没有任何Bridge了,意味着该PCI总线下已经没有挂载任何下游总线了,因此Bridge 3 的Subordinate Bus Number的值已经可以确定为4了。如下图所示:
第六步:
完成Bus 4的扫描后,系统返回到Bus 1继续扫描, 发现Bus 1下面已经没有其他Bridge了。此时Bridge 1的Subordinate Bus Number的值已经可以确定为4,系统返回Bus 0继续扫描(Bus 0下如果有其他它Bridge,将重复上述的步骤进行扫描)。至此,本例中的整个PCI的设备扫描已经完成了。最终的设备和总线的扫描结果如下图所示。
了解了上面PCI设备扫描的大概流程,我们接下来看看Bios代码中具体是如何实现这些扫描的。
一般来说,我们可以通过两个寄存器来访问PCI的配置空间(寄存器CONFIG_ADDRESS与CONFIG_DATA),在x86体系下,这两个寄存器分别对应0xCF8和0xCFC端口,对配置空间的访问都是通过对这两个寄存器的读写来实现先。CONFIG_ADDRESS寄存器的具体位组成如下图所示:
Bus Number : 总线号(8 bit),范围0--255。
Device Number: 设备号(5 bit),范围0--31。
Function Number: 功能号(3 bit),范围0--7。
Register Number: 寄存器号(6 bit),范围0--63 (配置空间一共256个字节,分割成64个4字节的寄存器,从0--63编号)。
因此,BIOS中PCI配置空间的读写可以封装成下面的函数:
static inline uint32_t pci_config_read32(pci_addr dev, uint8_t reg)
{
outl(dev | reg, 0xcf8);
return inl(0xcfc | reg);
}
static inline void pci_config_write32(pci_addr dev, uint8_t reg, uint32_t val)
{
outl(dev | reg, 0xcf8);
outl(val, 0xcfc);
}
总体来说。该BIOS扫描过程中调用如下几个主要的函数:
ob_pci_init ----> ob_scan_pci_bus ----> pci_find_device ----> ob_pci_configure
下面我们来具体看看代码,首先BIOS执行ob_pci_init(void)函数
int ob_pci_init(void)
{
int bus;
unsigned long mem_base, io_base;
char *path;
#ifdef CONFIG_DEBUG_PCI
printk("Initializing PCI devices...\n");
#endif
/* brute force bus scan */
/* Find all PCI bridges */
//获取系统指定的memeory与I/O空间的范围,分配给PCIe设备。
mem_base = arch->mem_base;
/* I/O ports under 0x400 are used by devices mapped at fixed
location. */
io_base = arch->io_base + 0x400;
path = strdup("");
/*遍历256条总线*/
for (bus = 0; bus<0x100; bus++) {
ob_scan_pci_bus(bus, &mem_base, &io_base, &path);
}
free(path);
return 0;
}
总线扫描具体实现:
static void ob_scan_pci_bus(int bus, unsigned long *mem_base,
unsigned long *io_base, char **path)
{
int devnum, fn, is_multi, vid, did;
unsigned int htype;
pci_addr addr;
pci_config_t config;
const pci_dev_t *pci_dev;
uint32_t ccode;
uint8_t class, subclass, iface, rev;
activate_device("/");
for (devnum = 0; devnum < 32; devnum++) {
is_multi = 0;
for (fn = 0; fn==0 || (is_multi && fn<8); fn++) {
#ifdef CONFIG_XBOX
if (pci_xbox_blacklisted (bus, devnum, fn))
continue;
#endif
addr = PCI_ADDR(bus, devnum, fn); /*获取设备配置空间地址*/
vid = pci_config_read16(addr, PCI_VENDOR_ID); /*获取Vendor ID*/
did = pci_config_read16(addr, PCI_DEVICE_ID); /*获取Device ID*/
if (vid==0xffff || vid==0)
continue;
ccode = pci_config_read16(addr, PCI_CLASS_DEVICE);
class = ccode >> 8;
subclass = ccode;
iface = pci_config_read8(addr, PCI_CLASS_PROG);
rev = pci_config_read8(addr, PCI_REVISION_ID);
pci_dev = pci_find_device(class, subclass, iface,/*具体设备查找以及初始化*/
vid, did);
#ifdef CONFIG_DEBUG_PCI
printk("%x:%x.%x - %x:%x - ", bus, devnum, fn,
vid, did);
#endif
htype = pci_config_read8(addr, PCI_HEADER_TYPE);
if (fn == 0)
is_multi = htype & 0x80;
if (pci_dev == NULL || pci_dev->name == NULL)
snprintf(config.path, sizeof(config.path),
"%s/pci%x,%x", *path, vid, did);
else
snprintf(config.path, sizeof(config.path),
"%s/%s", *path, pci_dev->name);
#ifdef CONFIG_DEBUG_PCI
printk("%s - ", config.path);
#endif
config.dev = addr & 0x00FFFFFF;
REGISTER_NAMED_NODE(ob_pci_node, config.path);
activate_device(config.path);
ob_pci_configure(addr, &config, mem_base, io_base); /*配置设备的配置空间*/
ob_pci_add_properties(addr, pci_dev, &config);
if (class == PCI_BASE_CLASS_BRIDGE &&
(subclass == PCI_SUBCLASS_BRIDGE_HOST ||
subclass == PCI_SUBCLASS_BRIDGE_PCI)) {
/* host or bridge */
free(*path);
*path = strdup(config.path);
}
}
}
device_end();
}
具体某条总线上的设备扫描由以下函数实现:
class="cpp" name="code">const pci_dev_t *pci_find_device (uint8_t class, uint8_t subclass,
摘自:http://bbs.ednchina.com/BLOG_ARTICLE_3011633.HTM
x86处理器的HOST主桥
x86处理器使用南北桥结构连接CPU和PCI设备。其中北桥(North Bridge)连接快速设备,如显卡、和内存条,并推出PCI总线,HOST主桥包含在北桥中。而南桥(South Bridge)连接慢速设备。x86处理器使用的南北桥结构如图2‑6所示。
Intel使用南北桥概念统一PC架构。但是从体系结构的角度上看,南北桥架构并不重要,北桥中存放的主要部件不过是存储器控制器、显卡控制器和HOST主桥而已,而南桥存放的是一些慢速设备,如ISA总线和中断控制器等。
不同的处理器系统集成这些组成部件的方式并不相同,如PowerPC、MIPS和ARM处理器系统通常将CPU和主要外部设备都集成到一颗芯片中,组成一颗基于SoC架构的处理器系统。这些集成方式并不重要,每一个处理器系统都有其针对的应用领域,不同应用领域的需求对处理器系统的集成方式有较大的影响。Intel采用的南北桥架构针对x86处理器的应用领域而设计,并不能说采用这种结构一定比MPC8548处理器中即含有HOST-to-PCI主桥也含有HOST-to-PCIe主桥更为合理。
在许多嵌入式处理器系统中,即含有PCI设备也含有PCIe设备,为此MPC8548处理器同时提供了PCI总线和PCIe总线接口,在这个处理器系统中,PCI设备可以与PCI总线直接相连,而PCIe设备可以与PCIe总线直接相连,因此并不需要使用PCIe桥扩展PCI总线,从而在一定程度上简化了嵌入式系统的设计。
嵌入式系统所面对的应用千姿百态,进行芯片设计时所要考虑的因素相对较多,因而在某种程度上为设计带来了一些难度。而x86处理器系统所面对的应用领域针对个人PC**务器,向前兼容和通用性显得更加重要。在多数情况下,一个通用处理器系统的设计难过专用处理器系统的设计,Intel为此付出了极大的代价。
在一些相对较老的北桥中,如Intel 440系列芯片组中包含了HOST主桥,从系统软件的角度上看HOST-to-PCI主桥实现的功能与HOST-to-PCIe主桥实现的功能相近。本节仅简单介绍Intel的HOST-to-PCI主桥如何产生PCI的配置周期,有关Intel HOST-to-PCIe主桥[9]的详细信息参见第5章。
x86处理器定义了两个I/O端口寄存器,分别为CONFIG_ADDRESS和CONFIG_DATA寄存器,其地址为0xCF8和0xCFC。x86处理器使用这两个I/O端口访问PCI设备的配置空间。PCI总线规范也以这个两个寄存器为例,说明处理器如何访问PCI设备的配置空间。其中CONFIG_ADDRESS寄存器存放PCI设备的ID号,而CONFIG_DATA寄存器存放进行配置读写的数据。
CONFIG_ADDRESS寄存器与PowerPC处理器中的CFG_ADDR寄存器的使用方法类似,而CONFIG_DATA寄存器与PowerPC处理器中的CFG_DATA寄存器的使用方法类似。CONFIG_ADDRESS寄存器的结构如图2‑7所示。
CONFIG_ADDRESS寄存器的各个字段和位的说明如下所示,
当x86处理器对CONFIG_DATA寄存器进行I/O读写访问,且CONFIG_ADDR寄存器的Enable位为1时,HOST主桥将这个I/O读写访问转换为PCI配置读写总线事务,然后发送到PCI总线上,PCI总线根据保存在CONFIG_ADDR寄存器中的ID号,将PCI配置读写请求发送到指定PCI设备的指定配置寄存器中。
x86处理器使用小端地址模式,因此从CONFIG_DATA寄存器中读出的数据不需要进行模式转换,这点和PowerPC处理器不同,此外x86处理器的HOST主桥也实现了存储器域到PCI总线域的地址转换,但是这个概念在x86处理器中并不明晰。
本书将在第5章以HOST-to-PCIe主桥为例,详细介绍Intel处理器的存储器地址与PCI总线地址的转换关系,而在本节不对x86处理器的HOST主桥做进一步说明。x86处理器系统的升级速度较快,目前在x86的处理器体系结构中,已很难发现HOST主桥的身影。
目前Intel对南北桥架构进行了升级,其中北桥被升级为MCH(Memory Controller Hub),而南桥被升级为ICH(I/O Controller Hub)。x86处理器系统在MCH中集成了存储器控制器、显卡芯片和HOST-to-PCIe主桥,并通过Hub Link与ICH相连;而在ICH中集成了一些相对低速总线接口,如AC’97、LPC(Low Pin Count)、IDE和USB总线,当然也包括一些低带宽的PCIe总线接口。
在Intel最新的Nehelem[10]处理器系统中,MCH被一份为二,存储器控制器和图形控制器已经与CPU内核集成在一个Die中,而MCH剩余的部分与ICH合并成为PCH(Peripheral Controller Hub)。但是从体系结构的角度上看,这些升级与整合并不重要。
目前Intel在Menlow[11]平台基础上,计划推出基于SoC架构的x86处理器,以进军手持设备市场。在基于SoC构架的x86处理器中将逐渐淡化Chipset的概念,其拓扑结构与典型的SoC处理器,如ARM和PowerPC处理器,较为类似。
[8]WBA字段并没有保存存储器域的第24~35位地址,因为Outbound窗口大小至少为4KB。
[9]这个HOST-to-PCIe主桥也是RC(Root Complex)的一部分。
[10] Nehelem处理器也被称为Core i7处理器。
[11] Menlow平台于2008年3月发布,其目标应用为MID(Mobile Internet Device)设备。Menlow平台基于低功耗处理器内核Atom。