- 机器学习入门:机器学习的基本概念
Louis0687
姓名:高亦凡学号:19020100056学院:电子工程学院转载自:原文链接【嵌牛导读】机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。【嵌牛鼻子】机器学习【嵌牛提问】什么是机器学
- 【机器学习基础】正则化
为梦而生~
机器学习机器学习人工智能
个人主页:为梦而生~关注我一起学习吧!专栏:机器学习欢迎订阅!后面的内容会越来越有意思~⭐特别提醒:针对机器学习,特别开始专栏:机器学习python实战欢迎订阅!本专栏针对机器学习基础专栏的理论知识,利用python代码进行实际展示,真正做到从基础到实战!往期推荐:【机器学习基础】机器学习入门(1)【机器学习基础】机器学习入门(2)【机器学习基础】机器学习的基本术语【机器学习基础】机器学习的模型评
- 机器学习入门--LSTM原理与实践
Dr.Cup
机器学习入门机器学习lstm人工智能
LSTM模型长短期记忆网络(LongShort-TermMemory,LSTM)是一种常用的循环神经网络(RNN)变体,特别擅长处理长序列数据和捕捉长期依赖关系。本文将介绍LSTM模型的数学原理、代码实现和实验结果,并使用pytorch和sklearn的数据集进行验证。数学原理遗忘门(ForgetGate)遗忘门的作用是决定前一时间步的细胞状态中哪些信息需要被遗忘。具体计算公式为:ft=σ(Wf⋅
- 机器学习入门--双向长短期记忆神经网络(BiLSTM)原理与实践
Dr.Cup
机器学习入门机器学习神经网络lstm
双向长短记忆网络(BiLSTM)BiLSTM(双向长短时记忆网络)是一种特殊的循环神经网络(RNN),它能够处理序列数据并保持长期记忆。与传统的RNN模型不同的是,BiLSTM同时考虑了过去和未来的信息,使得模型能够更好地捕捉序列数据中的上下文关系。在本文中,我们将详细介绍BiLSTM的数学原理、代码实现以及应用场景。数学原理LSTM(长短期记忆网络)是一种递归神经网络(RNN),通过引入门控机制
- 机器学习入门--循环神经网络原理与实践
Dr.Cup
机器学习入门机器学习rnn深度学习
循环神经网络循环神经网络(RNN)是一种在序列数据上表现出色的人工神经网络。相比于传统前馈神经网络,RNN更加适合处理时间序列数据,如音频信号、自然语言和股票价格等。本文将介绍RNN的基本数学原理、使用PyTorch和Scikit-Learn数据集实现的代码。数学原理RNN是一种带有循环结构的神经网络,其在处理序列数据时将前一次的输出作为当前输入的一部分。这使得RNN能够记住先前的状态和信息,并且
- 机器学习入门--门控循环单元(GRU)原理与实践
Dr.Cup
机器学习入门机器学习gru人工智能
GRU模型随着深度学习领域的快速发展,循环神经网络(RNN)已成为自然语言处理(NLP)等领域中常用的模型之一。但是,在RNN中,如果时间步数较大,会导致梯度消失或爆炸的问题,这影响了模型的训练效果。为了解决这个问题,研究人员提出了新的模型,其中GRU是其中的一种。本文将介绍GRU的数学原理、代码实现,并通过pytorch和sklearn的数据集进行试验,最后对该模型进行总结。数学原理GRU是一种
- 机器学习入门--多层感知机原理与实践
Dr.Cup
机器学习入门机器学习人工智能
神经网络与多层感知机神经网络是一种模仿生物神经系统结构和功能的计算模型。它由许多个节点(或称为神经元)组成,这些节点通过连接权重相互连接。神经网络的输入经过一系列的加权求和和激活函数变换后,得到输出结果。神经网络的训练过程主要包括前向传播和反向传播两个阶段。前向传播是指数据从输入层逐层传递到输出层的过程,每一层的节点都会根据输入值和连接权重计算输出值。反向传播是指通过计算损失函数对网络参数进行梯度
- 机器学习入门--BP神经网络原理与实践
Dr.Cup
机器学习入门机器学习神经网络人工智能
BP神经网络引言BP神经网络,即反向传播神经网络,是一种监督学习算法,用于多层前馈神经网络的训练。自从1986年由Rumelhart,Hinton和Williams提出以来,它已成为最流行的神经网络训练算法之一。BP算法的核心思想是通过计算损失函数相对于网络参数的梯度,然后利用这些梯度信息来更新网络的权重和偏置,从而最小化误差。数学原理BP算法的数学原理基于链式法则计算梯度。考虑一个简单的两层神经
- 机器学习入门--朴素贝叶斯原理与实践
Dr.Cup
机器学习入门机器学习概率论人工智能
朴素贝叶斯算法朴素贝叶斯是一种常用的分类算法,其基本思想是根据已有数据的特征和标签,学习出一个概率模型,并利用该模型对新样本进行分类。其优点在于简单快速、易于实现和解释,缺点在于对输入数据的分布做了严格的假设。具体来说,朴素贝叶斯分类器首先根据训练数据计算出每个类别的先验概率P©,即样本中每个类别占比。然后,对于给定的待分类样本,计算出它属于每个类别的条件概率P(X|C),其中X表示样本的特征向量
- 机器学习入门--奇异值分解原理与实践
Dr.Cup
机器学习入门机器学习人工智能
奇异值分解奇异值分解(SingularValueDecomposition,SVD)是一种矩阵分解技术,可以将一个矩阵分解为三个部分的乘积。在SVD中,原始矩阵被分解为左奇异向量矩阵、奇异值矩阵和右奇异向量矩阵的乘积。奇异值分解数学原理奇异值分解是一种矩阵分解技术,可以将一个矩阵分解为三个部分的乘积。在SVD中,原始矩阵被分解为左奇异向量矩阵、奇异值矩阵和右奇异向量矩阵的乘积。具体来说,对于一个m
- 机器学习入门--主成分分析原理与实践
Dr.Cup
机器学习入门机器学习概率论人工智能
主成分分析主成分分析(PrincipalComponentAnalysis,简称PCA)是一种常用的降维技术和数据分析方法。它通过线性变换将原始高维数据映射到低维空间,从而提取出数据中最重要的特征。主成分分析的基本原理与数学推导基本原理PCA的主要思想是找到一个新的坐标系,将数据投影到这个坐标系上,使得投影后的数据具有最大的方差。这意味着在新的坐标系下,数据的信息尽可能地集中在少数几个维度上,而其
- 机器学习入门--逻辑回归与简单二分类数据实战
Dr.Cup
机器学习入门机器学习逻辑回归分类
逻辑回归在机器学习领域,逻辑回归是一个广泛应用于分类问题的算法。与线性回归不同,逻辑回归用于预测离散的类别标签,可以处理二分类和多分类问题。下面我们将介绍逻辑回归的基本原理和实现方式。原理逻辑回归的目标是找到一个函数g(z)g(z)g(z),将输入的特征向量xxx映射到概率值p(y=1∣x;w)p(y=1|x;w)p(y=1∣x;w),其中www是参数向量。我们可以使用sigmoid函数来实现这个
- 机器学习入门--支持向量机原理与实践
Dr.Cup
机器学习入门支持向量机机器学习算法
支持向量机模型支持向量机(SupportVectorMachine,SVM)是一种常用的监督学习算法,主要用于分类和回归问题。它的原理简单而强大,在许多实际应用中取得了很好的效果。原理支持向量机(SupportVectorMachine,SVM)是一种常用的机器学习算法,用于分类和回归问题。其原理是基于统计学习理论中的结构风险最小化原则。SVM的主要思想是将数据通过一个高维特征空间进行映射,使得在
- 机器学习入门--简单卷积神经网络原理与实践
Dr.Cup
机器学习入门机器学习cnn人工智能
深入理解卷积神经网络(CNN)引言卷积神经网络(ConvolutionalNeuralNetworks,CNN)是深度学习中的一种核心算法,广泛应用于图像识别、视频分析和自然语言处理等领域。CNN通过模拟人类视觉系统的工作原理,能够自动并有效地识别图像中的模式和特征。数学原理CNN主要由卷积层、激活层和池化层组成。其核心在于卷积层,它使用一系列可学习的滤波器来扫描输入数据。卷积操作卷积神经网络(C
- 机器学习入门之基础概念及线性回归
StarCoder_Yue
算法机器学习学习笔记机器学习线性回归正则化人工智能算法数学
任务目录什么是Machinelearning学习中心极限定理,学习正态分布,学习最大似然估计推导回归Lossfunction学习损失函数与凸函数之间的关系了解全局最优和局部最优学习导数,泰勒展开推导梯度下降公式写出梯度下降的代码学习L2-Norm,L1-Norm,L0-Norm推导正则化公式说明为什么用L1-Norm代替L0-Norm学习为什么只对w/Θ做限制,不对b做限制Question1:Wh
- 浏览器F12调试
知行合一。。。
测试技术功能测试
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录1浏览器F12开发者工具1.1F12开发者工具基本介绍1.2F12常规设置2标签页2.1Elements查看器2.2Network网络2.3Network抓包分析案例1:以登录百度账号
- ui转py
CN-JackZhang
qtpython开发语言
pyqt系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录pyqt系列文章目录前言一、ui转py二、入门教程1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都
- 机器学习入门-----sklearn
辣椒酱.
python机器学习sklearn人工智能
机器学习基础了解概念机器学习是人工智能的一个实现途径深度学习是机器学习的一个方法发展而来定义:从数据中自动分析获得模型,并利用模型对特征数据【数据集:特征值+目标值构成】进行预测算法数据集的目标值是类别的话叫做分类问题;目标值是连续的数值的话叫做回归问题;统称监督学习;另一类是无监督学习,这一类的数据集没有目标值,典型:聚类;做什么可以进行传统预测、图像识别、自然语言处理传统预测店铺销量预测、量化
- 模式识别 | PRML概览
ZIYUE WU
MachineLearning
PRML全书概览PRML全称PatternRecognitionandMachineLearning,个人认为这是机器学习领域中最好的书籍之一,全书的风格非常Bayesian,作者试图在贝叶斯框架下解释每一种机器学习模型。阅读起来有一定难度,不适合作为机器学习入门教材。然而这本书提供的贝叶斯视角有助于我们更为立体全面理解一些经典模型。全书分为十四个章节,这里我尽可能简要概述每个章节的主要内容,如果
- Windows Server 2019 Web服务器搭建
可惜已不在
windows运维服务器
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录WindowsServer2003Web服务器搭建WindowsServer2003FTP服务器搭建WindowsServer2003DNS服务器搭建WindowsServer2003DHCP服务
- 一、容器化技术-docker初识
天灾领主加尔鲁什
原生云容器docker
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用目录前言一、docker是什么?二、环境约定三、环境安装四、安装centos7五、操作实例六、安装docker常用命令前言去了新公司线上应用部署环境由传统服务器直接部署变为使用docker,并且感觉以前部署应用方式不够优雅,面对微服务体系资源利用率不够高,所以学习do
- 机器学习入门(10)— 浅显易懂的计算图、链式法则讲解
wohu007
MachineLearning
1.计算图概念计算图将计算过程用图形表示出来。这里说的图形是数据结构图,通过多个节点和边表示(连接节点的直线称为“边”)。2.计算图求解问题1:小明在超市买了2个100日元一个的苹果,消费税是10%,请计算支付金额。计算图通过节点和箭头表示计算过程。节点用○表示,○中是计算的内容。将计算的中间结果写在箭头的上方,表示各个节点的计算结果从左向右传递。用计算图解问题1,求解过程如图5-1所示。虽然图5
- 【无标题】
MarkHD
pythonpandas机器学习
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了
- 机器学习入门笔记06:逻辑回归
劳斯Laus
逻辑回归学习逻辑回归原理实现代码importnumpyasnpimportmatplotlib.pyplotaspltfromsklearnimportdatasetsfromsklearn.model_selectionimporttrain_test_split#因为逻辑回归是分类问题,因此需要对评价指标进行更改#from.metricsimportaccuracy_scoreclassLog
- 最强机器学习入门博客(吴恩达机器学习课程总结)
PengHao666999
机器学习人工智能
机器学习的概述诞生现实生活许多领域的问题不能通过显式编程实现,比如制造自动驾驶汽车、智能工厂、规模农业、计算机视觉等等,一种好的实现方式是通过学习算法让计算机自己学习如何做。现在现在是学习机器学习最好的时机,因为机器学习在未来能产生巨大的价值未来机器学习在软件领域方面取得了巨大的价值,比如智能推荐,网络搜索,图像识别等机器学习在许多其他的领域仍有巨大的价值,比如未来在自动驾驶汽车,工厂,农业,医疗
- 【机器学习笔记】0 基础知识之python基础
RIKI_1
机器学习机器学习笔记python
注:本文内容仅为个人学习笔记,教程为黄海广老师主讲的机器学习入门系列,课程链接(中国大学慕课,有习题和证书)课程资源(pdf版本课件和代码)公布在Github链接课程视频也可以在b站观看(观看方便,但无课后习题和证书)本笔记仅简单记录关于python需要熟悉掌握的内容点,不详细展开记录python环境安装python环境安装网上教程很多不做赘述,推荐黄海广老师发布的安装教程:Python环境的安装
- 如何系统学习机器学习?
人邮异步社区
学习机器学习人工智能
要系统学习机器学习,首先需要掌握一些基础编程技能,如Python。其次,学习基础的数学概念,如线性代数、概率论和统计学。然后,选择一些优质的在线课程和教材进行深入学习。最后,通过实践项目来巩固所学知识。以下是一些推荐的书籍:《动手学机器学习》,"西瓜书"作者周志华力荐的机器学习入门书。本书系统介绍了机器学习的基本内容及其代码实现,是一本着眼于机器学习教学实践的图书。本书包含4个部分:第一部分为机器
- 【机器学习笔记】0 背景知识之数学基础
RIKI_1
机器学习机器学习笔记人工智能
注:本文内容仅为个人学习笔记,教程为黄海广老师主讲的机器学习入门系列,课程链接(中国大学慕课,有习题和证书):https://www.icourse163.org/course/WZU-1464096179,课程资源(pdf版本课件和代码)公布在Github:https://github.com/fengdu78/WZU-machine-learning-course,课程视频也可以在b站观看(观
- 《Python 简易速速上手小册》第9章:数据科学和机器学习入门(基于最新版 Python3.12 编写)
江帅帅
《Python简易速速上手小册》python机器学习开发语言
注意:本《Python简易速速上手小册》核心目的在于让零基础新手「快速构建Python知识体系」文章目录注意:本《Python简易速速上手小册》核心目的在于让零基础新手「快速构建Python知识体系」9.1Python在数据科学中的应用9.1.1数据处理与清洗9.1.2数据分析9.1.3数据可视化9.2NumPy和Pandas基础9.2.1NumPy基础9.2.2Pandas基础9.3简介机器学习
- python机器学习实战|机器学习入门笔记3-Pandas基础知识
小赵同学871
机器学习实战入门笔记python机器学习pandas
文章目录1.Pandas介绍2.案例知识点2.1创建DataFrame2.2创建日期3.DataFrame介绍3.1DataFrame属性3.2DataFrame设置索引3.3基本数据操作3.4DataFrame运算1.Pandas介绍开源的数据挖掘库,用于数据探索,封装了matplotlib,numpy2.案例知识点2.1创建DataFramepd.DataFrame(ndarray,index
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key