One-HOT编码处理训练集中没遇到过的特征值的方法handle_unknown

Another possibility to convert categorical features to features that can be used with scikit-learn estimators is to use a one-of-K, also known as one-hot or dummy encoding. This type of encoding can be obtained with the OneHotEncoder, which transforms each categorical feature with n_categories possible values into n_categories binary features, with one of them 1, and all others 0.

Continuing the example above:

>>>

>>> enc = preprocessing.OneHotEncoder()
>>> X = [['male', 'from US', 'uses Safari'], ['female', 'from Europe', 'uses Firefox']]
>>> enc.fit(X)  
OneHotEncoder(categorical_features=None, categories=None, drop=None,
       dtype=<... 'numpy.float64'>, handle_unknown='error',
       n_values=None, sparse=True)
>>> enc.transform([['female', 'from US', 'uses Safari'],
...                ['male', 'from Europe', 'uses Safari']]).toarray()
array([[1., 0., 0., 1., 0., 1.],
       [0., 1., 1., 0., 0., 1.]])

By default, the values each feature can take is inferred automatically from the dataset and can be found in the categories_ attribute:

>>>

>>> enc.categories_
[array(['female', 'male'], dtype=object), array(['from Europe', 'from US'], dtype=object), array(['uses Firefox', 'uses Safari'], dtype=object)]

It is possible to specify this explicitly using the parameter categories. There are two genders, four possible continents and four web browsers in our dataset:

>>>

>>> genders = ['female', 'male']
>>> locations = ['from Africa', 'from Asia', 'from Europe', 'from US']
>>> browsers = ['uses Chrome', 'uses Firefox', 'uses IE', 'uses Safari']
>>> enc = preprocessing.OneHotEncoder(categories=[genders, locations, browsers])
>>> # Note that for there are missing categorical values for the 2nd and 3rd
>>> # feature
>>> X = [['male', 'from US', 'uses Safari'], ['female', 'from Europe', 'uses Firefox']]
>>> enc.fit(X) 
OneHotEncoder(categorical_features=None,
       categories=[...], drop=None,
       dtype=<... 'numpy.float64'>, handle_unknown='error',
       n_values=None, sparse=True)
>>> enc.transform([['female', 'from Asia', 'uses Chrome']]).toarray()
array([[1., 0., 0., 1., 0., 0., 1., 0., 0., 0.]])

If there is a possibility that the training data might have missing categorical features, it can often be better to specify handle_unknown='ignore' instead of setting the categories manually as above. When handle_unknown='ignore' is specified and unknown categories are encountered during transform, no error will be raised but the resulting one-hot encoded columns for this feature will be all zeros (handle_unknown='ignore' is only supported for one-hot encoding):

>>>

>>> enc = preprocessing.OneHotEncoder(handle_unknown='ignore')
>>> X = [['male', 'from US', 'uses Safari'], ['female', 'from Europe', 'uses Firefox']]
>>> enc.fit(X) 
OneHotEncoder(categorical_features=None, categories=None, drop=None,
       dtype=<... 'numpy.float64'>, handle_unknown='ignore',
       n_values=None, sparse=True)
>>> enc.transform([['female', 'from Asia', 'uses Chrome']]).toarray()
array([[1., 0., 0., 0., 0., 0.]])

It is also possible to encode each column into n_categories - 1 columns instead of n_categories columns by using the drop parameter. This parameter allows the user to specify a category for each feature to be dropped. This is useful to avoid co-linearity in the input matrix in some classifiers. Such functionality is useful, for example, when using non-regularized regression (LinearRegression), since co-linearity would cause the covariance matrix to be non-invertible. When this paramenter is not None, handle_unknown must be set to error:

>>>

>>> X = [['male', 'from US', 'uses Safari'], ['female', 'from Europe', 'uses Firefox']]
>>> drop_enc = preprocessing.OneHotEncoder(drop='first').fit(X)
>>> drop_enc.categories_
[array(['female', 'male'], dtype=object), array(['from Europe', 'from US'], dtype=object), array(['uses Firefox', 'uses Safari'], dtype=object)]
>>> drop_enc.transform(X).toarray()
array([[1., 1., 1.],
       [0., 0., 0.]])

你可能感兴趣的:(One-HOT编码处理训练集中没遇到过的特征值的方法handle_unknown)