Python 图像分割

**

图像分割

**
1.图像分割的原理
图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。从数学角度来看,图像分割是将数字图像划分成互不相交的区域的过程。图像分割的过程也是一个标记过程,即把属于同一区域的像索赋予相同的编号。
2.实验代码
代码1:

from pygraph.classes.digraph import digraph
from pygraph.algorithms.minmax import maximum_flow

gr = digraph()
gr.add_nodes([0,1,2,3])
gr.add_edge((0,1), wt=4)
gr.add_edge((1,2), wt=3)
gr.add_edge((2,3), wt=5)
gr.add_edge((0,2), wt=3)
gr.add_edge((1,3), wt=4)
flows,cuts = maximum_flow(gr, 0, 3)
print ('flow is:' , flows)
print ('cut is:' , cuts)

实验结果
Python 图像分割_第1张图片
代码2:

# -*- coding: utf-8 -*-

from scipy.misc import imresize
from PCV.tools import graphcut
from PIL import Image
from numpy import *
from pylab import *

im = array(Image.open("empire.jpg"))
im = imresize(im, 0.07)
size = im.shape[:2]
print ("OK!!")

# add two rectangular training regions
labels = zeros(size)
labels[3:18, 3:18] = -1
labels[-18:-3, -18:-3] = 1
print ("OK!!")


# create graph
g = graphcut.build_bayes_graph(im, labels, kappa=1)

# cut the graph
res = graphcut.cut_graph(g, size)
print ("OK!!")


figure()
graphcut.show_labeling(im, labels)

figure()
imshow(res)
gray()
axis('off')

show()

实验结果
Python 图像分割_第2张图片Python 图像分割_第3张图片

你可能感兴趣的:(python)