MR求两个用户的共同粉丝列表

以下是qq的好友列表数据,冒号前是一个用户,冒号后是该用户的所有好友(数据中的好友关系是单向的)
A:B,C,D,F,E,O
B:A,C,E,K
C:F,A,D,I
D:A,E,F,L
E:B,C,D,M,L
F:A,B,C,D,E,O,M
G:A,C,D,E,F
H:A,C,D,E,O
I:A,O
J:B,O
K:A,C,D
L:D,E,F
M:E,F,G
O:A,H,I,J

求出哪些人两两之间有共同好友,及他俩的共同好友都有谁?
解题思路:
第一步
map
读一行 A:B,C,D,F,E,O
输出

 package com.ljt.mrsharefriends;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

/***
 * 
 * 

Title: 共同粉丝列表

*

功能描述:: * 1)找出所有用户是哪些用户的共同粉丝 * 2)找出两个用户之间的共同粉丝 *

*

Company: adteach

* @author 刘建涛 * * @date 2017年7月19日下午6:50:39 * @version 1.0 */
public class SharedFriendsStepOne { static class SharedFriendsStepOneMapper extends Mapper<LongWritable, Text, Text, Text>{ @Override protected void map(LongWritable key, Text value, Mapper.Context context) throws IOException, InterruptedException { //A:B,C,D,F,E,O // B:A,C,E,K String line = value.toString(); //每个用户的粉丝列表 String[] person_friends = line.split(":"); String user = person_friends[0]; String friends = person_friends[1]; for (String friend : friends.split(",")) { //map输出用户的粉丝<粉丝,用户>给reduce context.write(new Text(friend), new Text(user)); } } } static class SharedFriendsStepOneReducer extends Reducer<Text, Text, Text, Text> { @Override protected void reduce(Text friend, Iterable persons, Context context) throws IOException, InterruptedException { StringBuffer sb = new StringBuffer(); for (Text person : persons) { sb.append(person).append(","); } context.write(friend, new Text(sb.toString())); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(SharedFriendsStepOne.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); job.setMapperClass(SharedFriendsStepOneMapper.class); job.setReducerClass(SharedFriendsStepOneReducer.class); FileInputFormat.setInputPaths(job, new Path("srcdata/friends")); FileOutputFormat.setOutputPath(job, new Path("temp/out")); job.waitForCompletion(true); } }

第二步:找出 <人-人,好友> ,这样,相同的“人-人”对的所有好友就会到同1个reduce中去

 package com.ljt.mrsharefriends;

import java.io.IOException;
import java.util.Arrays;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/**
 * 
 * 

Title: 找出两个用户之间的共同好友

*

功能描述::

*

Company: adteach

* @author 刘建涛 * * @date 2017年7月19日下午7:15:16 * @version 1.0 */
public class SharedFriendsStepTwo { static class SharedFriendsStepTwoMapper extends Mapper<LongWritable, Text, Text, Text> { // 拿到的数据是上一个步骤的输出结果 // A I,K,C,B,G,F,H,O,D, // 友 人,人,人 @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String[] friend_persons = line.split("\t"); String friend = friend_persons[0]; String[] persons = friend_persons[1].split(","); //对用户排序 Arrays.sort(persons); for (int i = 0; i < persons.length - 1; i++) { for (int j = i + 1; j < persons.length; j++) { // 发出 <人-人,好友> ,这样,相同的“人-人”对的所有好友就会到同1个reduce中去 context.write(new Text(persons[i] + "-" + persons[j]), new Text(friend)); } } } } static class SharedFriendsStepTwoReducer extends Reducer<Text, Text, Text, Text> { @Override protected void reduce(Text person_person, Iterable friends, Context context) throws IOException, InterruptedException { StringBuffer sb = new StringBuffer(); for (Text friend : friends) { sb.append(friend).append(" "); } context.write(person_person, new Text(sb.toString())); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(SharedFriendsStepTwo.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); job.setMapperClass(SharedFriendsStepTwoMapper.class); job.setReducerClass(SharedFriendsStepTwoReducer.class); FileInputFormat.setInputPaths(job, new Path("/temp/out/part-r-00000")); FileOutputFormat.setOutputPath(job, new Path("/temp/out2")); job.waitForCompletion(true); } }

你可能感兴趣的:(bigdata)