CNN手写识别体识别

如果使用MNIST数据集训练 SimpleConvNet,则训练数据的识别率为
99.82%,测试数据的识别率为98.96%(每次学习的识别精度都会发生一些误差)。测试数据的识别率大约为99%,就小型网络来说,这是一个非常高的识别率

https://github.com/reader-sword/Deep-learning-from-scratch-master
源代码在 ch07/train_convnet.py中
实现函数

# coding: utf-8
import sys, os
sys.path.append(os.pardir)  # 親ディレクトリのファイルをインポートするための設定
import pickle
import numpy as np
from collections import OrderedDict
from common.layers import *
from common.gradient import numerical_gradient

# 搭建进行手写数字识别的CNN
class SimpleConvNet:
    """単純なConvNet
     • input_dim―输入数据的维度:(通道,高,长) • conv_param―卷积层的超参数(字典)。字典的关键字如下:
     filter_num―滤波器的数量
     filter_size―滤波器的大小
     stride―步幅
     pad―填充
         • hidden_size―隐藏层(全连接)的神经元数量
         • output_size―输出层(全连接)的神经元数量
         • weitght_int_std―初始化时权重的标准差
        activation : 'relu' or 'sigmoid'
        weight_init_std : 重みの標準偏差を指定(e.g. 0.01)
        'relu'または'he'を指定した場合は「Heの初期値」を設定
        'sigmoid'または'xavier'を指定した場合は「Xavierの初期値」を設定
    """
#  
# 初始化参数
    def __init__(self, input_dim=(1, 28, 28), 
                 conv_param={'filter_num':30, 'filter_size':5, 'pad':0, 'stride':1},
                 hidden_size=100, output_size=10, weight_init_std=0.01):
                # filter_num ―滤波器的数量
        filter_num = conv_param['filter_num']
        # filter_size ―滤波器的大小
        filter_size = conv_param['filter_size']
        # 填充
        filter_pad = conv_param['pad']
        # 步幅
        filter_stride = conv_param['stride']
        input_size = input_dim[1]
        conv_output_size = (input_size - filter_size + 2*filter_pad) / filter_stride + 1
        pool_output_size = int(filter_num * (conv_output_size/2) * (conv_output_size/2))

        # 初期化参数
        # 学习所需的参数是第1层的卷积层和剩余两个全连接层的权重和偏置。
      # 将这些参数保存在实例变量的 params字典中。将第1层的卷积层的权重设为
      # 关键字 W1,偏置设为关键字 b1。
      # 同样,分别用关键字 W2、 b2和关键字 W3、 b3
      # 来保存第2个和第3个全连接层的权重和偏置
        self.params = {}
        self.params['W1'] = weight_init_std * \
                            np.random.randn(filter_num, input_dim[0], filter_size, filter_size)
        self.params['b1'] = np.zeros(filter_num)
        self.params['W2'] = weight_init_std * \
                            np.random.randn(pool_output_size, hidden_size)
        self.params['b2'] = np.zeros(hidden_size)
        ‘
        self.params['W3'] = weight_init_std * \
                            np.random.randn(hidden_size, output_size)
        self.params['b3'] = np.zeros(output_size)

        # レイヤの生成
        
        # 从最前面开始按顺序向有序字典(OrderedDict)的 layers中添加层。
        # 只有最后的 SoftmaxWithLoss层被添加到别的变量 lastLayer中。
# 以上就是 SimpleConvNet的初始化中进行的处理。像这样初始化后,进行推理的 predict方法和求损失函数值的 loss方法就可以像下面这样实现
        self.layers = OrderedDict()
        self.layers['Conv1'] = Convolution(self.params['W1'], self.params['b1'],
                                           conv_param['stride'], conv_param['pad'])
        self.layers['Relu1'] = Relu()
        self.layers['Pool1'] = Pooling(pool_h=2, pool_w=2, stride=2)
        self.layers['Affine1'] = Affine(self.params['W2'], self.params['b2'])
        self.layers['Relu2'] = Relu()
        self.layers['Affine2'] = Affine(self.params['W3'], self.params['b3'])

        self.last_layer = SoftmaxWithLoss()
# 预测函数
    def predict(self, x):
        for layer in self.layers.values():
            x = layer.forward(x)

        return x
        
        # 参数 x是输入数据, t是教师标签
        # 。用于推理的 predict方法从头
# 开始依次调用已添加的层,并将结果传递给下一层。在求损失函数的 loss
# 方法中,除了使用 predict方法进行的 forward处理之外,还会继续进行
# forward处理,直到到达最后的 SoftmaxWithLoss层
# 损失函数
    def loss(self, x, t):
        """損失関数を求める
        引数のxは入力データ、tは教師ラベル
        """
        y = self.predict(x)
        return self.last_layer.forward(y, t)

    def accuracy(self, x, t, batch_size=100):
        if t.ndim != 1 : t = np.argmax(t, axis=1)
        
        acc = 0.0
        
        for i in range(int(x.shape[0] / batch_size)):
            tx = x[i*batch_size:(i+1)*batch_size]
            tt = t[i*batch_size:(i+1)*batch_size]
            y = self.predict(tx)
            y = np.argmax(y, axis=1)
            acc += np.sum(y == tt) 
        
        return acc / x.shape[0]

    def numerical_gradient(self, x, t):
        """勾配を求める(数値微分)

        Parameters
        ----------
        x : 入力データ
        t : 教師ラベル

        Returns
        -------
        各層の勾配を持ったディクショナリ変数
            grads['W1']、grads['W2']、...は各層の重み
            grads['b1']、grads['b2']、...は各層のバイアス
        """
        loss_w = lambda w: self.loss(x, t)

        grads = {}
        for idx in (1, 2, 3):
            grads['W' + str(idx)] = numerical_gradient(loss_w, self.params['W' + str(idx)])
            grads['b' + str(idx)] = numerical_gradient(loss_w, self.params['b' + str(idx)])

        return grads
# 接下来是基于误差反向传播法求梯度的代码实现

    def gradient(self, x, t):
        """勾配を求める(誤差逆伝搬法)

        Parameters
        ----------
        x : 入力データ
        t : 教師ラベル

        Returns
        -------
        各層の勾配を持ったディクショナリ変数
            grads['W1']、grads['W2']、...は各層の重み
            grads['b1']、grads['b2']、...は各層のバイアス
        """
        # forward
        self.loss(x, t)

        # backward
        dout = 1
        dout = self.last_layer.backward(dout)

        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)

        # 設定
        grads = {}
        grads['W1'], grads['b1'] = self.layers['Conv1'].dW, self.layers['Conv1'].db
        grads['W2'], grads['b2'] = self.layers['Affine1'].dW, self.layers['Affine1'].db
        grads['W3'], grads['b3'] = self.layers['Affine2'].dW, self.layers['Affine2'].db

        return grads
        
    def save_params(self, file_name="params.pkl"):
        params = {}
        for key, val in self.params.items():
            params[key] = val
        with open(file_name, 'wb') as f:
            pickle.dump(params, f)

    def load_params(self, file_name="params.pkl"):
        with open(file_name, 'rb') as f:
            params = pickle.load(f)
        for key, val in params.items():
            self.params[key] = val

        for i, key in enumerate(['Conv1', 'Affine1', 'Affine2']):
            self.layers[key].W = self.params['W' + str(i+1)]
            self.layers[key].b = self.params['b' + str(i+1)]

函数调用

如果使用MNIST数据集训练 SimpleConvNet,则训练数据的识别率为
99.82%,测试数据的识别率为98.96%(每次学习的识别精度都会发生一些误
差)。测试数据的识别率大约为99%,就小型网络来说,这是一个非常高的
识别率
# coding: utf-8
import sys, os
sys.path.append(os.pardir)  # 親ディレクトリのファイルをインポートするための設定
import numpy as np
import matplotlib.pyplot as plt
from dataset.mnist import load_mnist
from simple_convnet import SimpleConvNet
from common.trainer import Trainer

# データの読み込み
(x_train, t_train), (x_test, t_test) = load_mnist(flatten=False)

# 処理に時間のかかる場合はデータを削減 
#x_train, t_train = x_train[:5000], t_train[:5000]
#x_test, t_test = x_test[:1000], t_test[:1000]

max_epochs = 20

network = SimpleConvNet(input_dim=(1,28,28), 
                        conv_param = {'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1},
                        hidden_size=100, output_size=10, weight_init_std=0.01)
                        
trainer = Trainer(network, x_train, t_train, x_test, t_test,
                  epochs=max_epochs, mini_batch_size=100,
                  optimizer='Adam', optimizer_param={'lr': 0.001},
                  evaluate_sample_num_per_epoch=1000)
trainer.train()

# パラメータの保存
network.save_params("params.pkl")
print("Saved Network Parameters!")

# グラフの描画
markers = {'train': 'o', 'test': 's'}
x = np.arange(max_epochs)
plt.plot(x, trainer.train_acc_list, marker='o', label='train', markevery=2)
plt.plot(x, trainer.test_acc_list, marker='s', label='test', markevery=2)
plt.xlabel("epochs")
plt.ylabel("accuracy")
plt.ylim(0, 1.0)
plt.legend(loc='lower right')
plt.show()

你可能感兴趣的:(Python)