JDK11源码学习01 | Map接口

JDK11源码学习01 | Map接口

package java.util;

import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Function;
import java.io.Serializable;

/**
 * An object that maps keys to values.  A map cannot contain duplicate keys;
 * each key can map to at most one value.
 * 
 * 一个将键映射到值的对象。Map 中不能包含重复的 key;每个键可以映射至多一个值。
 *
 *
 * 

This interface takes the place of the {@code Dictionary} class, which * was a totally abstract class rather than an interface. * * 此接口目的是为了取代 Dictionary 类,它是一个完全抽象的类,而不是一个接口。 * * *

The {@code Map} interface provides three collection views, which * allow a map's contents to be viewed as a set of keys, collection of values, * or set of key-value mappings. The order of a map is defined as * the order in which the iterators on the map's collection views return their * elements. Some map implementations, like the {@code TreeMap} class, make * specific guarantees as to their order; others, like the {@code HashMap} * class, do not. * * Map 接口提供了三个 collection views,它们允许将 Map 的内容视为一组 keys、values 的集合, * 或一组 key-value 映射。Map 中的 order 被定义为映射集合视图上的迭代器返回它们的顺序。 * 一些映射实现,比如 TreeMap 类,对它们的顺序作出特定的保证;其他一些映射实现,例如 HashMap,则没有。 * * *

Note: great care must be exercised if mutable objects are used as map * keys. The behavior of a map is not specified if the value of an object is * changed in a manner that affects {@code equals} comparisons while the * object is a key in the map. A special case of this prohibition is that it * is not permissible for a map to contain itself as a key. While it is * permissible for a map to contain itself as a value, extreme caution is * advised: the {@code equals} and {@code hashCode} methods are no longer * well defined on such a map. * * 注意:如果使用可变对象作为 Map 的 key,必须非常小心。如果对象的值以影响 equals() 比较的方式改变, * 而对象是映射中的键,则不指定映射的行为。这种禁止的一个特殊情况是地图不允许把自己作为一个键。 * 虽然允许映射将自身包含为一个值,但是建议极端小心:equals() 和 hashCode() 方法不再很好地定义在这样的映射上。 * * *

All general-purpose map implementation classes should provide two * "standard" constructors: a void (no arguments) constructor which creates an * empty map, and a constructor with a single argument of type {@code Map}, * which creates a new map with the same key-value mappings as its argument. * In effect, the latter constructor allows the user to copy any map, * producing an equivalent map of the desired class. There is no way to * enforce this recommendation (as interfaces cannot contain constructors) but * all of the general-purpose map implementations in the JDK comply. * * 所有通用映射实现类都应该提供两个“标准”构造函数: * 一个创建空映射的空(无参数)构造函数,和一个具有类型 Map 的单个参数的构造函数, * 该构造函数创建具有与其参数相同的键值映射的新映射。 * 实际上,后一个构造器允许用户复制任何映射,产生期望的类的等价映射。 * 没有办法强制执行这个建议(因为接口不能包含构造函数),但是 JDK 中的所有通用映射实现都遵从。 * * *

The "destructive" methods contained in this interface, that is, the * methods that modify the map on which they operate, are specified to throw * {@code UnsupportedOperationException} if this map does not support the * operation. If this is the case, these methods may, but are not required * to, throw an {@code UnsupportedOperationException} if the invocation would * have no effect on the map. For example, invoking the {@link #putAll(Map)} * method on an unmodifiable map may, but is not required to, throw the * exception if the map whose mappings are to be "superimposed" is empty. * * 这个接口中包含的“破坏性”方法,即修改它们操作的映射的方法,被指定为如果该映射不支持该操作, * 则抛出 UnsupportedOperationException。如果是这种情况,如果调用对映射没有影响, * 则这些方法可能抛出 UnsupportedOperationException,但不是必需的。 * 例如,在不可修改的映射上调用{@link#putAll(Map)}方法可以抛出异常, * 但如果映射为“叠加”的映射为空,则不需要抛出异常。 * * *

Some map implementations have restrictions on the keys and values they * may contain. For example, some implementations prohibit null keys and * values, and some have restrictions on the types of their keys. Attempting * to insert an ineligible key or value throws an unchecked exception, * typically {@code NullPointerException} or {@code ClassCastException}. * Attempting to query the presence of an ineligible key or value may throw an * exception, or it may simply return false; some implementations will exhibit * the former behavior and some will exhibit the latter. More generally, * attempting an operation on an ineligible key or value whose completion * would not result in the insertion of an ineligible element into the map may * throw an exception or it may succeed, at the option of the implementation. * Such exceptions are marked as "optional" in the specification for this * interface. * * 一些 map 实现对它们可能包含的键和值有限制。例如,一些实现禁止空键和值,并且有些对它们的键的类型有限制。 * 试图插入不合格的键或值将引发未检查的异常,通常是 NullPointerException 或 ClassCastException。 * 试图查询不合格的密钥或值的存在可能会引发异常,或者它只会返回 false;一些实现将显示前一种行为,而有些将显示后一种行为。 * 更一般地,尝试对不合格的键或值进行操作,如果该键或值的完成不会导致将不合格的元素插入到映射中,则可能会抛出异常, * 或者根据实现的选项,该操作可能成功。此类异常在该接口的规范中被标记为“可选”。 * * *

Many methods in Collections Framework interfaces are defined * in terms of the {@link Object#equals(Object) equals} method. For * example, the specification for the {@link #containsKey(Object) * containsKey(Object key)} method says: "returns {@code true} if and * only if this map contains a mapping for a key {@code k} such that * {@code (key==null ? k==null : key.equals(k))}." This specification should * not be construed to imply that invoking {@code Map.containsKey} * with a non-null argument {@code key} will cause {@code key.equals(k)} to * be invoked for any key {@code k}. Implementations are free to * implement optimizations whereby the {@code equals} invocation is avoided, * for example, by first comparing the hash codes of the two keys. (The * {@link Object#hashCode()} specification guarantees that two objects with * unequal hash codes cannot be equal.) More generally, implementations of * the various Collections Framework interfaces are free to take advantage of * the specified behavior of underlying {@link Object} methods wherever the * implementor deems it appropriate. * * 集合框架接口中的许多方法是用 Object#equals(Object) 方法定义的。 例如,containsKey(Object key) 方法 * 的规范说:“如果且仅当此映射包含键 k 的映射, 例如 (key==null?k==null:key.equals(k)。” * 此规范不应被解释为暗示使用非空参数 key 调用 Map.containsKey 将导致对任何键 k 调用 key.equals(k)。 * 实现可以自由地实现优化,从而避免 equals 调用, * 例如,首先比较两个键的哈希码。(hashCode() 规范保证具有不同哈希码的两个对象不能相等。) * 更一般地,各种 Collections Framework 接口的实现可以自由地利用底层 Object 方法的指定行为,无论实施者认为它是适当的。 * * *

Some map operations which perform recursive traversal of the map may fail * with an exception for self-referential instances where the map directly or * indirectly contains itself. This includes the {@code clone()}, * {@code equals()}, {@code hashCode()} and {@code toString()} methods. * Implementations may optionally handle the self-referential scenario, however * most current implementations do not do so. * * 执行映射递归遍历的一些映射操作可能会失败,但是对于映射直接或间接包含自身的自引用实例。 * 这包括 clone(),equals(),hashCode() 和 toString() 方法。实现可以任选地处理自引用场景,但是大多数当前实现不这样做。 * * *

Unmodifiable Maps

*

The {@link Map#of() Map.of}, * {@link Map#ofEntries(Map.Entry...) Map.ofEntries}, and * {@link Map#copyOf Map.copyOf} * static factory methods provide a convenient way to create unmodifiable maps. * The {@code Map} * instances created by these methods have the following characteristics: * *

    *
  • They are unmodifiable. Keys and values * cannot be added, removed, or updated. Calling any mutator method on the Map * will always cause {@code UnsupportedOperationException} to be thrown. * However, if the contained keys or values are themselves mutable, this may cause the * Map to behave inconsistently or its contents to appear to change. *
  • They disallow {@code null} keys and values. Attempts to create them with * {@code null} keys or values result in {@code NullPointerException}. *
  • They are serializable if all keys and values are serializable. *
  • They reject duplicate keys at creation time. Duplicate keys * passed to a static factory method result in {@code IllegalArgumentException}. *
  • The iteration order of mappings is unspecified and is subject to change. *
  • They are value-based. * Callers should make no assumptions about the identity of the returned instances. * Factories are free to create new instances or reuse existing ones. Therefore, * identity-sensitive operations on these instances (reference equality ({@code ==}), * identity hash code, and synchronization) are unreliable and should be avoided. *
  • They are serialized as specified on the * Serialized Form * page. *
* *

This interface is a member of the * * Java Collections Framework. * * @param the type of keys maintained by this map * @param the type of mapped values * * @author Josh Bloch * @see HashMap * @see TreeMap * @see Hashtable * @see SortedMap * @see Collection * @see Set * @since 1.2 */ public interface Map<K, V> { // Query Operations /** * Returns the number of key-value mappings in this map. If the * map contains more than {@code Integer.MAX_VALUE} elements, returns * {@code Integer.MAX_VALUE}. * * @return the number of key-value mappings in this map */ int size(); /** * Returns {@code true} if this map contains no key-value mappings. * * @return {@code true} if this map contains no key-value mappings */ boolean isEmpty(); /** * Returns {@code true} if this map contains a mapping for the specified * key. More formally, returns {@code true} if and only if * this map contains a mapping for a key {@code k} such that * {@code Objects.equals(key, k)}. (There can be * at most one such mapping.) * * @param key key whose presence in this map is to be tested * @return {@code true} if this map contains a mapping for the specified * key * @throws ClassCastException if the key is of an inappropriate type for * this map * (optional) * @throws NullPointerException if the specified key is null and this map * does not permit null keys * (optional) */ boolean containsKey(Object key); /** * Returns {@code true} if this map maps one or more keys to the * specified value. More formally, returns {@code true} if and only if * this map contains at least one mapping to a value {@code v} such that * {@code Objects.equals(value, v)}. This operation * will probably require time linear in the map size for most * implementations of the {@code Map} interface. * * @param value value whose presence in this map is to be tested * @return {@code true} if this map maps one or more keys to the * specified value * @throws ClassCastException if the value is of an inappropriate type for * this map * (optional) * @throws NullPointerException if the specified value is null and this * map does not permit null values * (optional) */ boolean containsValue(Object value); /** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * *

More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that * {@code Objects.equals(key, k)}, * then this method returns {@code v}; otherwise * it returns {@code null}. (There can be at most one such mapping.) * *

If this map permits null values, then a return value of * {@code null} does not necessarily indicate that the map * contains no mapping for the key; it's also possible that the map * explicitly maps the key to {@code null}. The {@link #containsKey * containsKey} operation may be used to distinguish these two cases. * * @param key the key whose associated value is to be returned * @return the value to which the specified key is mapped, or * {@code null} if this map contains no mapping for the key * @throws ClassCastException if the key is of an inappropriate type for * this map * (optional) * @throws NullPointerException if the specified key is null and this map * does not permit null keys * (optional) */ V get(Object key); // Modification Operations /** * Associates the specified value with the specified key in this map * (optional operation). If the map previously contained a mapping for * the key, the old value is replaced by the specified value. (A map * {@code m} is said to contain a mapping for a key {@code k} if and only * if {@link #containsKey(Object) m.containsKey(k)} would return * {@code true}.) * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with {@code key}, or * {@code null} if there was no mapping for {@code key}. * (A {@code null} return can also indicate that the map * previously associated {@code null} with {@code key}, * if the implementation supports {@code null} values.) * @throws UnsupportedOperationException if the {@code put} operation * is not supported by this map * @throws ClassCastException if the class of the specified key or value * prevents it from being stored in this map * @throws NullPointerException if the specified key or value is null * and this map does not permit null keys or values * @throws IllegalArgumentException if some property of the specified key * or value prevents it from being stored in this map */ V put(K key, V value); /** * Removes the mapping for a key from this map if it is present * (optional operation). More formally, if this map contains a mapping * from key {@code k} to value {@code v} such that * {@code Objects.equals(key, k)}, that mapping * is removed. (The map can contain at most one such mapping.) * *

Returns the value to which this map previously associated the key, * or {@code null} if the map contained no mapping for the key. * *

If this map permits null values, then a return value of * {@code null} does not necessarily indicate that the map * contained no mapping for the key; it's also possible that the map * explicitly mapped the key to {@code null}. * *

The map will not contain a mapping for the specified key once the * call returns. * * @param key key whose mapping is to be removed from the map * @return the previous value associated with {@code key}, or * {@code null} if there was no mapping for {@code key}. * @throws UnsupportedOperationException if the {@code remove} operation * is not supported by this map * @throws ClassCastException if the key is of an inappropriate type for * this map * (optional) * @throws NullPointerException if the specified key is null and this * map does not permit null keys * (optional) */ V remove(Object key); // Bulk Operations /** * Copies all of the mappings from the specified map to this map * (optional operation). The effect of this call is equivalent to that * of calling {@link #put(Object,Object) put(k, v)} on this map once * for each mapping from key {@code k} to value {@code v} in the * specified map. The behavior of this operation is undefined if the * specified map is modified while the operation is in progress. * * @param m mappings to be stored in this map * @throws UnsupportedOperationException if the {@code putAll} operation * is not supported by this map * @throws ClassCastException if the class of a key or value in the * specified map prevents it from being stored in this map * @throws NullPointerException if the specified map is null, or if * this map does not permit null keys or values, and the * specified map contains null keys or values * @throws IllegalArgumentException if some property of a key or value in * the specified map prevents it from being stored in this map */ void putAll(Map<? extends K, ? extends V> m); /** * Removes all of the mappings from this map (optional operation). * The map will be empty after this call returns. * * @throws UnsupportedOperationException if the {@code clear} operation * is not supported by this map */ void clear(); // Views /** * Returns a {@link Set} view of the keys contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own {@code remove} operation), the results of * the iteration are undefined. The set supports element removal, * which removes the corresponding mapping from the map, via the * {@code Iterator.remove}, {@code Set.remove}, * {@code removeAll}, {@code retainAll}, and {@code clear} * operations. It does not support the {@code add} or {@code addAll} * operations. * * @return a set view of the keys contained in this map */ Set<K> keySet(); /** * Returns a {@link Collection} view of the values contained in this map. * The collection is backed by the map, so changes to the map are * reflected in the collection, and vice-versa. If the map is * modified while an iteration over the collection is in progress * (except through the iterator's own {@code remove} operation), * the results of the iteration are undefined. The collection * supports element removal, which removes the corresponding * mapping from the map, via the {@code Iterator.remove}, * {@code Collection.remove}, {@code removeAll}, * {@code retainAll} and {@code clear} operations. It does not * support the {@code add} or {@code addAll} operations. * * @return a collection view of the values contained in this map */ Collection<V> values(); /** * Returns a {@link Set} view of the mappings contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own {@code remove} operation, or through the * {@code setValue} operation on a map entry returned by the * iterator) the results of the iteration are undefined. The set * supports element removal, which removes the corresponding * mapping from the map, via the {@code Iterator.remove}, * {@code Set.remove}, {@code removeAll}, {@code retainAll} and * {@code clear} operations. It does not support the * {@code add} or {@code addAll} operations. * * @return a set view of the mappings contained in this map */ Set<Map.Entry<K, V>> entrySet(); /** * A map entry (key-value pair). The {@code Map.entrySet} method returns * a collection-view of the map, whose elements are of this class. The * only way to obtain a reference to a map entry is from the * iterator of this collection-view. These {@code Map.Entry} objects are * valid only for the duration of the iteration; more formally, * the behavior of a map entry is undefined if the backing map has been * modified after the entry was returned by the iterator, except through * the {@code setValue} operation on the map entry. * * @see Map#entrySet() * @since 1.2 */ interface Entry<K, V> { /** * Returns the key corresponding to this entry. * * @return the key corresponding to this entry * @throws IllegalStateException implementations may, but are not * required to, throw this exception if the entry has been * removed from the backing map. */ K getKey(); /** * Returns the value corresponding to this entry. If the mapping * has been removed from the backing map (by the iterator's * {@code remove} operation), the results of this call are undefined. * * @return the value corresponding to this entry * @throws IllegalStateException implementations may, but are not * required to, throw this exception if the entry has been * removed from the backing map. */ V getValue(); /** * Replaces the value corresponding to this entry with the specified * value (optional operation). (Writes through to the map.) The * behavior of this call is undefined if the mapping has already been * removed from the map (by the iterator's {@code remove} operation). * * @param value new value to be stored in this entry * @return old value corresponding to the entry * @throws UnsupportedOperationException if the {@code put} operation * is not supported by the backing map * @throws ClassCastException if the class of the specified value * prevents it from being stored in the backing map * @throws NullPointerException if the backing map does not permit * null values, and the specified value is null * @throws IllegalArgumentException if some property of this value * prevents it from being stored in the backing map * @throws IllegalStateException implementations may, but are not * required to, throw this exception if the entry has been * removed from the backing map. */ V setValue(V value); /** * Compares the specified object with this entry for equality. * Returns {@code true} if the given object is also a map entry and * the two entries represent the same mapping. More formally, two * entries {@code e1} and {@code e2} represent the same mapping * if

         *     (e1.getKey()==null ?
         *      e2.getKey()==null : e1.getKey().equals(e2.getKey()))  &&
         *     (e1.getValue()==null ?
         *      e2.getValue()==null : e1.getValue().equals(e2.getValue()))
         * 
* This ensures that the {@code equals} method works properly across * different implementations of the {@code Map.Entry} interface. * * @param o object to be compared for equality with this map entry * @return {@code true} if the specified object is equal to this map * entry */
boolean equals(Object o); /** * Returns the hash code value for this map entry. The hash code * of a map entry {@code e} is defined to be:
         *     (e.getKey()==null   ? 0 : e.getKey().hashCode()) ^
         *     (e.getValue()==null ? 0 : e.getValue().hashCode())
         * 
* This ensures that {@code e1.equals(e2)} implies that * {@code e1.hashCode()==e2.hashCode()} for any two Entries * {@code e1} and {@code e2}, as required by the general * contract of {@code Object.hashCode}. * * @return the hash code value for this map entry * @see Object#hashCode() * @see Object#equals(Object) * @see #equals(Object) */
int hashCode(); /** * Returns a comparator that compares {@link Map.Entry} in natural order on key. * *

The returned comparator is serializable and throws {@link * NullPointerException} when comparing an entry with a null key. * * @param the {@link Comparable} type of then map keys * @param the type of the map values * @return a comparator that compares {@link Map.Entry} in natural order on key. * @see Comparable * @since 1.8 */ public static <K extends Comparable<? super K>, V> Comparator<Map.Entry<K, V>> comparingByKey() { return (Comparator<Map.Entry<K, V>> & Serializable) (c1, c2) -> c1.getKey().compareTo(c2.getKey()); } /** * Returns a comparator that compares {@link Map.Entry} in natural order on value. * *

The returned comparator is serializable and throws {@link * NullPointerException} when comparing an entry with null values. * * @param the type of the map keys * @param the {@link Comparable} type of the map values * @return a comparator that compares {@link Map.Entry} in natural order on value. * @see Comparable * @since 1.8 */ public static <K, V extends Comparable<? super V>> Comparator<Map.Entry<K, V>> comparingByValue() { return (Comparator<Map.Entry<K, V>> & Serializable) (c1, c2) -> c1.getValue().compareTo(c2.getValue()); } /** * Returns a comparator that compares {@link Map.Entry} by key using the given * {@link Comparator}. * *

The returned comparator is serializable if the specified comparator * is also serializable. * * @param the type of the map keys * @param the type of the map values * @param cmp the key {@link Comparator} * @return a comparator that compares {@link Map.Entry} by the key. * @since 1.8 */ public static <K, V> Comparator<Map.Entry<K, V>> comparingByKey(Comparator<? super K> cmp) { Objects.requireNonNull(cmp); return (Comparator<Map.Entry<K, V>> & Serializable) (c1, c2) -> cmp.compare(c1.getKey(), c2.getKey()); } /** * Returns a comparator that compares {@link Map.Entry} by value using the given * {@link Comparator}. * *

The returned comparator is serializable if the specified comparator * is also serializable. * * @param the type of the map keys * @param the type of the map values * @param cmp the value {@link Comparator} * @return a comparator that compares {@link Map.Entry} by the value. * @since 1.8 */ public static <K, V> Comparator<Map.Entry<K, V>> comparingByValue(Comparator<? super V> cmp) { Objects.requireNonNull(cmp); return (Comparator<Map.Entry<K, V>> & Serializable) (c1, c2) -> cmp.compare(c1.getValue(), c2.getValue()); } } // Comparison and hashing /** * Compares the specified object with this map for equality. Returns * {@code true} if the given object is also a map and the two maps * represent the same mappings. More formally, two maps {@code m1} and * {@code m2} represent the same mappings if * {@code m1.entrySet().equals(m2.entrySet())}. This ensures that the * {@code equals} method works properly across different implementations * of the {@code Map} interface. * * @param o object to be compared for equality with this map * @return {@code true} if the specified object is equal to this map */ boolean equals(Object o); /** * Returns the hash code value for this map. The hash code of a map is * defined to be the sum of the hash codes of each entry in the map's * {@code entrySet()} view. This ensures that {@code m1.equals(m2)} * implies that {@code m1.hashCode()==m2.hashCode()} for any two maps * {@code m1} and {@code m2}, as required by the general contract of * {@link Object#hashCode}. * * @return the hash code value for this map * @see Map.Entry#hashCode() * @see Object#equals(Object) * @see #equals(Object) */ int hashCode(); // Defaultable methods /** * Returns the value to which the specified key is mapped, or * {@code defaultValue} if this map contains no mapping for the key. * * @implSpec * The default implementation makes no guarantees about synchronization * or atomicity properties of this method. Any implementation providing * atomicity guarantees must override this method and document its * concurrency properties. * * @param key the key whose associated value is to be returned * @param defaultValue the default mapping of the key * @return the value to which the specified key is mapped, or * {@code defaultValue} if this map contains no mapping for the key * @throws ClassCastException if the key is of an inappropriate type for * this map * (optional) * @throws NullPointerException if the specified key is null and this map * does not permit null keys * (optional) * @since 1.8 */ default V getOrDefault(Object key, V defaultValue) { V v; return (((v = get(key)) != null) || containsKey(key)) ? v : defaultValue; } /** * Performs the given action for each entry in this map until all entries * have been processed or the action throws an exception. Unless * otherwise specified by the implementing class, actions are performed in * the order of entry set iteration (if an iteration order is specified.) * Exceptions thrown by the action are relayed to the caller. * * @implSpec * The default implementation is equivalent to, for this {@code map}: *

 {@code
     * for (Map.Entry entry : map.entrySet())
     *     action.accept(entry.getKey(), entry.getValue());
     * }
* * The default implementation makes no guarantees about synchronization * or atomicity properties of this method. Any implementation providing * atomicity guarantees must override this method and document its * concurrency properties. * * @param action The action to be performed for each entry * @throws NullPointerException if the specified action is null * @throws ConcurrentModificationException if an entry is found to be * removed during iteration * @since 1.8 */
default void forEach(BiConsumer<? super K, ? super V> action) { Objects.requireNonNull(action); for (Map.Entry<K, V> entry : entrySet()) { K k; V v; try { k = entry.getKey(); v = entry.getValue(); } catch (IllegalStateException ise) { // this usually means the entry is no longer in the map. throw new ConcurrentModificationException(ise); } action.accept(k, v); } } /** * Replaces each entry's value with the result of invoking the given * function on that entry until all entries have been processed or the * function throws an exception. Exceptions thrown by the function are * relayed to the caller. * * @implSpec *

The default implementation is equivalent to, for this {@code map}: *

 {@code
     * for (Map.Entry entry : map.entrySet())
     *     entry.setValue(function.apply(entry.getKey(), entry.getValue()));
     * }
* *

The default implementation makes no guarantees about synchronization * or atomicity properties of this method. Any implementation providing * atomicity guarantees must override this method and document its * concurrency properties. * * @param function the function to apply to each entry * @throws UnsupportedOperationException if the {@code set} operation * is not supported by this map's entry set iterator. * @throws ClassCastException if the class of a replacement value * prevents it from being stored in this map * @throws NullPointerException if the specified function is null, or the * specified replacement value is null, and this map does not permit null * values * @throws ClassCastException if a replacement value is of an inappropriate * type for this map * (optional) * @throws NullPointerException if function or a replacement value is null, * and this map does not permit null keys or values * (optional) * @throws IllegalArgumentException if some property of a replacement value * prevents it from being stored in this map * (optional) * @throws ConcurrentModificationException if an entry is found to be * removed during iteration * @since 1.8 */ default void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { Objects.requireNonNull(function); for (Map.Entry<K, V> entry : entrySet()) { K k; V v; try { k = entry.getKey(); v = entry.getValue(); } catch (IllegalStateException ise) { // this usually means the entry is no longer in the map. throw new ConcurrentModificationException(ise); } // ise thrown from function is not a cme. v = function.apply(k, v); try { entry.setValue(v); } catch (IllegalStateException ise) { // this usually means the entry is no longer in the map. throw new ConcurrentModificationException(ise); } } } /** * If the specified key is not already associated with a value (or is mapped * to {@code null}) associates it with the given value and returns * {@code null}, else returns the current value. * * @implSpec * The default implementation is equivalent to, for this {@code * map}: * *

 {@code
     * V v = map.get(key);
     * if (v == null)
     *     v = map.put(key, value);
     *
     * return v;
     * }
* *

The default implementation makes no guarantees about synchronization * or atomicity properties of this method. Any implementation providing * atomicity guarantees must override this method and document its * concurrency properties. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with the specified key, or * {@code null} if there was no mapping for the key. * (A {@code null} return can also indicate that the map * previously associated {@code null} with the key, * if the implementation supports null values.) * @throws UnsupportedOperationException if the {@code put} operation * is not supported by this map * (optional) * @throws ClassCastException if the key or value is of an inappropriate * type for this map * (optional) * @throws NullPointerException if the specified key or value is null, * and this map does not permit null keys or values * (optional) * @throws IllegalArgumentException if some property of the specified key * or value prevents it from being stored in this map * (optional) * @since 1.8 */ default V putIfAbsent(K key, V value) { V v = get(key); if (v == null) { v = put(key, value); } return v; } /** * Removes the entry for the specified key only if it is currently * mapped to the specified value. * * @implSpec * The default implementation is equivalent to, for this {@code map}: * *

 {@code
     * if (map.containsKey(key) && Objects.equals(map.get(key), value)) {
     *     map.remove(key);
     *     return true;
     * } else
     *     return false;
     * }
* *

The default implementation makes no guarantees about synchronization * or atomicity properties of this method. Any implementation providing * atomicity guarantees must override this method and document its * concurrency properties. * * @param key key with which the specified value is associated * @param value value expected to be associated with the specified key * @return {@code true} if the value was removed * @throws UnsupportedOperationException if the {@code remove} operation * is not supported by this map * (optional) * @throws ClassCastException if the key or value is of an inappropriate * type for this map * (optional) * @throws NullPointerException if the specified key or value is null, * and this map does not permit null keys or values * (optional) * @since 1.8 */ default boolean remove(Object key, Object value) { Object curValue = get(key); if (!Objects.equals(curValue, value) || (curValue == null && !containsKey(key))) { return false; } remove(key); return true; } /** * Replaces the entry for the specified key only if currently * mapped to the specified value. * * @implSpec * The default implementation is equivalent to, for this {@code map}: * *

 {@code
     * if (map.containsKey(key) && Objects.equals(map.get(key), value)) {
     *     map.put(key, newValue);
     *     return true;
     * } else
     *     return false;
     * }
* * The default implementation does not throw NullPointerException * for maps that do not support null values if oldValue is null unless * newValue is also null. * *

The default implementation makes no guarantees about synchronization * or atomicity properties of this method. Any implementation providing * atomicity guarantees must override this method and document its * concurrency properties. * * @param key key with which the specified value is associated * @param oldValue value expected to be associated with the specified key * @param newValue value to be associated with the specified key * @return {@code true} if the value was replaced * @throws UnsupportedOperationException if the {@code put} operation * is not supported by this map * (optional) * @throws ClassCastException if the class of a specified key or value * prevents it from being stored in this map * @throws NullPointerException if a specified key or newValue is null, * and this map does not permit null keys or values * @throws NullPointerException if oldValue is null and this map does not * permit null values * (optional) * @throws IllegalArgumentException if some property of a specified key * or value prevents it from being stored in this map * @since 1.8 */ default boolean replace(K key, V oldValue, V newValue) { Object curValue = get(key); if (!Objects.equals(curValue, oldValue) || (curValue == null && !containsKey(key))) { return false; } put(key, newValue); return true; } /** * Replaces the entry for the specified key only if it is * currently mapped to some value. * * @implSpec * The default implementation is equivalent to, for this {@code map}: * *

 {@code
     * if (map.containsKey(key)) {
     *     return map.put(key, value);
     * } else
     *     return null;
     * }
* *

The default implementation makes no guarantees about synchronization * or atomicity properties of this method. Any implementation providing * atomicity guarantees must override this method and document its * concurrency properties. * * @param key key with which the specified value is associated * @param value value to be associated with the specified key * @return the previous value associated with the specified key, or * {@code null} if there was no mapping for the key. * (A {@code null} return can also indicate that the map * previously associated {@code null} with the key, * if the implementation supports null values.) * @throws UnsupportedOperationException if the {@code put} operation * is not supported by this map * (optional) * @throws ClassCastException if the class of the specified key or value * prevents it from being stored in this map * (optional) * @throws NullPointerException if the specified key or value is null, * and this map does not permit null keys or values * @throws IllegalArgumentException if some property of the specified key * or value prevents it from being stored in this map * @since 1.8 */ default V replace(K key, V value) { V curValue; if (((curValue = get(key)) != null) || containsKey(key)) { curValue = put(key, value); } return curValue; } /** * If the specified key is not already associated with a value (or is mapped * to {@code null}), attempts to compute its value using the given mapping * function and enters it into this map unless {@code null}. * *

If the mapping function returns {@code null}, no mapping is recorded. * If the mapping function itself throws an (unchecked) exception, the * exception is rethrown, and no mapping is recorded. The most * common usage is to construct a new object serving as an initial * mapped value or memoized result, as in: * *

 {@code
     * map.computeIfAbsent(key, k -> new Value(f(k)));
     * }
* *

Or to implement a multi-value map, {@code Map>}, * supporting multiple values per key: * *

 {@code
     * map.computeIfAbsent(key, k -> new HashSet()).add(v);
     * }
* *

The mapping function should not modify this map during computation. * * @implSpec * The default implementation is equivalent to the following steps for this * {@code map}, then returning the current value or {@code null} if now * absent: * *

 {@code
     * if (map.get(key) == null) {
     *     V newValue = mappingFunction.apply(key);
     *     if (newValue != null)
     *         map.put(key, newValue);
     * }
     * }
* *

The default implementation makes no guarantees about detecting if the * mapping function modifies this map during computation and, if * appropriate, reporting an error. Non-concurrent implementations should * override this method and, on a best-effort basis, throw a * {@code ConcurrentModificationException} if it is detected that the * mapping function modifies this map during computation. Concurrent * implementations should override this method and, on a best-effort basis, * throw an {@code IllegalStateException} if it is detected that the * mapping function modifies this map during computation and as a result * computation would never complete. * 默认实现不保证检测映射函数在计算期间是否修改了该映射,如果合适,则报告错误。 * 非并发实现应该重写此方法,如果检测到映射函数在计算期间修改了此映射, * 则在尽力的基础上抛出 ConcurrentModificationException。 * 并发实现应该重写此方法,如果检测到映射函数在计算期间修改了此映射, * 并且结果计算永远不会完成,则在尽力的基础上抛出 IllegalStateException 。 * *

The default implementation makes no guarantees about synchronization * or atomicity properties of this method. Any implementation providing * atomicity guarantees must override this method and document its * concurrency properties. In particular, all implementations of * subinterface {@link java.util.concurrent.ConcurrentMap} must document * whether the mapping function is applied once atomically only if the value * is not present. * * @param key key with which the specified value is to be associated * @param mappingFunction the mapping function to compute a value * @return the current (existing or computed) value associated with * the specified key, or null if the computed value is null * @throws NullPointerException if the specified key is null and * this map does not support null keys, or the mappingFunction * is null * @throws UnsupportedOperationException if the {@code put} operation * is not supported by this map * (optional) * @throws ClassCastException if the class of the specified key or value * prevents it from being stored in this map * (optional) * @throws IllegalArgumentException if some property of the specified key * or value prevents it from being stored in this map * (optional) * @since 1.8 */ default V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) { Objects.requireNonNull(mappingFunction); V v; if ((v = get(key)) == null) { V newValue; if ((newValue = mappingFunction.apply(key)) != null) { put(key, newValue); return newValue; } } return v; } /** * If the value for the specified key is present and non-null, attempts to * compute a new mapping given the key and its current mapped value. * *

If the remapping function returns {@code null}, the mapping is removed. * If the remapping function itself throws an (unchecked) exception, the * exception is rethrown, and the current mapping is left unchanged. * *

The remapping function should not modify this map during computation. * * @implSpec * The default implementation is equivalent to performing the following * steps for this {@code map}, then returning the current value or * {@code null} if now absent: * *

 {@code
     * if (map.get(key) != null) {
     *     V oldValue = map.get(key);
     *     V newValue = remappingFunction.apply(key, oldValue);
     *     if (newValue != null)
     *         map.put(key, newValue);
     *     else
     *         map.remove(key);
     * }
     * }
* *

The default implementation makes no guarantees about detecting if the * remapping function modifies this map during computation and, if * appropriate, reporting an error. Non-concurrent implementations should * override this method and, on a best-effort basis, throw a * {@code ConcurrentModificationException} if it is detected that the * remapping function modifies this map during computation. Concurrent * implementations should override this method and, on a best-effort basis, * throw an {@code IllegalStateException} if it is detected that the * remapping function modifies this map during computation and as a result * computation would never complete. * *

The default implementation makes no guarantees about synchronization * or atomicity properties of this method. Any implementation providing * atomicity guarantees must override this method and document its * concurrency properties. In particular, all implementations of * subinterface {@link java.util.concurrent.ConcurrentMap} must document * whether the remapping function is applied once atomically only if the * value is not present. * * @param key key with which the specified value is to be associated * @param remappingFunction the remapping function to compute a value * @return the new value associated with the specified key, or null if none * @throws NullPointerException if the specified key is null and * this map does not support null keys, or the * remappingFunction is null * @throws UnsupportedOperationException if the {@code put} operation * is not supported by this map * (optional) * @throws ClassCastException if the class of the specified key or value * prevents it from being stored in this map * (optional) * @throws IllegalArgumentException if some property of the specified key * or value prevents it from being stored in this map * (optional) * @since 1.8 */ default V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { Objects.requireNonNull(remappingFunction); V oldValue; if ((oldValue = get(key)) != null) { V newValue = remappingFunction.apply(key, oldValue); if (newValue != null) { put(key, newValue); return newValue; } else { remove(key); return null; } } else { return null; } } /** * Attempts to compute a mapping for the specified key and its current * mapped value (or {@code null} if there is no current mapping). For * example, to either create or append a {@code String} msg to a value * mapping: * *

 {@code
     * map.compute(key, (k, v) -> (v == null) ? msg : v.concat(msg))}
* (Method {@link #merge merge()} is often simpler to use for such purposes.) * *

If the remapping function returns {@code null}, the mapping is removed * (or remains absent if initially absent). If the remapping function * itself throws an (unchecked) exception, the exception is rethrown, and * the current mapping is left unchanged. * *

The remapping function should not modify this map during computation. * * @implSpec * The default implementation is equivalent to performing the following * steps for this {@code map}, then returning the current value or * {@code null} if absent: * *

 {@code
     * V oldValue = map.get(key);
     * V newValue = remappingFunction.apply(key, oldValue);
     * if (oldValue != null) {
     *    if (newValue != null)
     *       map.put(key, newValue);
     *    else
     *       map.remove(key);
     * } else {
     *    if (newValue != null)
     *       map.put(key, newValue);
     *    else
     *       return null;
     * }
     * }
* *

The default implementation makes no guarantees about detecting if the * remapping function modifies this map during computation and, if * appropriate, reporting an error. Non-concurrent implementations should * override this method and, on a best-effort basis, throw a * {@code ConcurrentModificationException} if it is detected that the * remapping function modifies this map during computation. Concurrent * implementations should override this method and, on a best-effort basis, * throw an {@code IllegalStateException} if it is detected that the * remapping function modifies this map during computation and as a result * computation would never complete. * *

The default implementation makes no guarantees about synchronization * or atomicity properties of this method. Any implementation providing * atomicity guarantees must override this method and document its * concurrency properties. In particular, all implementations of * subinterface {@link java.util.concurrent.ConcurrentMap} must document * whether the remapping function is applied once atomically only if the * value is not present. * * @param key key with which the specified value is to be associated * @param remappingFunction the remapping function to compute a value * @return the new value associated with the specified key, or null if none * @throws NullPointerException if the specified key is null and * this map does not support null keys, or the * remappingFunction is null * @throws UnsupportedOperationException if the {@code put} operation * is not supported by this map * (optional) * @throws ClassCastException if the class of the specified key or value * prevents it from being stored in this map * (optional) * @throws IllegalArgumentException if some property of the specified key * or value prevents it from being stored in this map * (optional) * @since 1.8 */ default V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { Objects.requireNonNull(remappingFunction); V oldValue = get(key); V newValue = remappingFunction.apply(key, oldValue); if (newValue == null) { // delete mapping if (oldValue != null || containsKey(key)) { // something to remove remove(key); return null; } else { // nothing to do. Leave things as they were. return null; } } else { // add or replace old mapping put(key, newValue); return newValue; } } /** * If the specified key is not already associated with a value or is * associated with null, associates it with the given non-null value. * Otherwise, replaces the associated value with the results of the given * remapping function, or removes if the result is {@code null}. This * method may be of use when combining multiple mapped values for a key. * For example, to either create or append a {@code String msg} to a * value mapping: * *

 {@code
     * map.merge(key, msg, String::concat)
     * }
* *

If the remapping function returns {@code null}, the mapping is removed. * If the remapping function itself throws an (unchecked) exception, the * exception is rethrown, and the current mapping is left unchanged. * *

The remapping function should not modify this map during computation. * * @implSpec * The default implementation is equivalent to performing the following * steps for this {@code map}, then returning the current value or * {@code null} if absent: * *

 {@code
     * V oldValue = map.get(key);
     * V newValue = (oldValue == null) ? value :
     *              remappingFunction.apply(oldValue, value);
     * if (newValue == null)
     *     map.remove(key);
     * else
     *     map.put(key, newValue);
     * }
* *

The default implementation makes no guarantees about detecting if the * remapping function modifies this map during computation and, if * appropriate, reporting an error. Non-concurrent implementations should * override this method and, on a best-effort basis, throw a * {@code ConcurrentModificationException} if it is detected that the * remapping function modifies this map during computation. Concurrent * implementations should override this method and, on a best-effort basis, * throw an {@code IllegalStateException} if it is detected that the * remapping function modifies this map during computation and as a result * computation would never complete. * *

The default implementation makes no guarantees about synchronization * or atomicity properties of this method. Any implementation providing * atomicity guarantees must override this method and document its * concurrency properties. In particular, all implementations of * subinterface {@link java.util.concurrent.ConcurrentMap} must document * whether the remapping function is applied once atomically only if the * value is not present. * * @param key key with which the resulting value is to be associated * @param value the non-null value to be merged with the existing value * associated with the key or, if no existing value or a null value * is associated with the key, to be associated with the key * @param remappingFunction the remapping function to recompute a value if * present * @return the new value associated with the specified key, or null if no * value is associated with the key * @throws UnsupportedOperationException if the {@code put} operation * is not supported by this map * (optional) * @throws ClassCastException if the class of the specified key or value * prevents it from being stored in this map * (optional) * @throws IllegalArgumentException if some property of the specified key * or value prevents it from being stored in this map * (optional) * @throws NullPointerException if the specified key is null and this map * does not support null keys or the value or remappingFunction is * null * @since 1.8 */ default V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) { Objects.requireNonNull(remappingFunction); Objects.requireNonNull(value); V oldValue = get(key); V newValue = (oldValue == null) ? value : remappingFunction.apply(oldValue, value); if (newValue == null) { remove(key); } else { put(key, newValue); } return newValue; } /** * Returns an unmodifiable map containing zero mappings. * See Unmodifiable Maps for details. * * @param the {@code Map}'s key type * @param the {@code Map}'s value type * @return an empty {@code Map} * * @since 9 */ static <K, V> Map<K, V> of() { return ImmutableCollections.emptyMap(); } /** * Returns an unmodifiable map containing a single mapping. * See Unmodifiable Maps for details. * * @param the {@code Map}'s key type * @param the {@code Map}'s value type * @param k1 the mapping's key * @param v1 the mapping's value * @return a {@code Map} containing the specified mapping * @throws NullPointerException if the key or the value is {@code null} * * @since 9 */ static <K, V> Map<K, V> of(K k1, V v1) { return new ImmutableCollections.Map1<>(k1, v1); } /** * Returns an unmodifiable map containing two mappings. * See Unmodifiable Maps for details. * * @param the {@code Map}'s key type * @param the {@code Map}'s value type * @param k1 the first mapping's key * @param v1 the first mapping's value * @param k2 the second mapping's key * @param v2 the second mapping's value * @return a {@code Map} containing the specified mappings * @throws IllegalArgumentException if the keys are duplicates * @throws NullPointerException if any key or value is {@code null} * * @since 9 */ static <K, V> Map<K, V> of(K k1, V v1, K k2, V v2) { return new ImmutableCollections.MapN<>(k1, v1, k2, v2); } /** * Returns an unmodifiable map containing three mappings. * See Unmodifiable Maps for details. * * @param the {@code Map}'s key type * @param the {@code Map}'s value type * @param k1 the first mapping's key * @param v1 the first mapping's value * @param k2 the second mapping's key * @param v2 the second mapping's value * @param k3 the third mapping's key * @param v3 the third mapping's value * @return a {@code Map} containing the specified mappings * @throws IllegalArgumentException if there are any duplicate keys * @throws NullPointerException if any key or value is {@code null} * * @since 9 */ static <K, V> Map<K, V> of(K k1, V v1, K k2, V v2, K k3, V v3) { return new ImmutableCollections.MapN<>(k1, v1, k2, v2, k3, v3); } /** * Returns an unmodifiable map containing four mappings. * See Unmodifiable Maps for details. * * @param the {@code Map}'s key type * @param the {@code Map}'s value type * @param k1 the first mapping's key * @param v1 the first mapping's value * @param k2 the second mapping's key * @param v2 the second mapping's value * @param k3 the third mapping's key * @param v3 the third mapping's value * @param k4 the fourth mapping's key * @param v4 the fourth mapping's value * @return a {@code Map} containing the specified mappings * @throws IllegalArgumentException if there are any duplicate keys * @throws NullPointerException if any key or value is {@code null} * * @since 9 */ static <K, V> Map<K, V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V v4) { return new ImmutableCollections.MapN<>(k1, v1, k2, v2, k3, v3, k4, v4); } /** * Returns an unmodifiable map containing five mappings. * See Unmodifiable Maps for details. * * @param the {@code Map}'s key type * @param the {@code Map}'s value type * @param k1 the first mapping's key * @param v1 the first mapping's value * @param k2 the second mapping's key * @param v2 the second mapping's value * @param k3 the third mapping's key * @param v3 the third mapping's value * @param k4 the fourth mapping's key * @param v4 the fourth mapping's value * @param k5 the fifth mapping's key * @param v5 the fifth mapping's value * @return a {@code Map} containing the specified mappings * @throws IllegalArgumentException if there are any duplicate keys * @throws NullPointerException if any key or value is {@code null} * * @since 9 */ static <K, V> Map<K, V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V v4, K k5, V v5) { return new ImmutableCollections.MapN<>(k1, v1, k2, v2, k3, v3, k4, v4, k5, v5); } /** * Returns an unmodifiable map containing six mappings. * See Unmodifiable Maps for details. * * @param the {@code Map}'s key type * @param the {@code Map}'s value type * @param k1 the first mapping's key * @param v1 the first mapping's value * @param k2 the second mapping's key * @param v2 the second mapping's value * @param k3 the third mapping's key * @param v3 the third mapping's value * @param k4 the fourth mapping's key * @param v4 the fourth mapping's value * @param k5 the fifth mapping's key * @param v5 the fifth mapping's value * @param k6 the sixth mapping's key * @param v6 the sixth mapping's value * @return a {@code Map} containing the specified mappings * @throws IllegalArgumentException if there are any duplicate keys * @throws NullPointerException if any key or value is {@code null} * * @since 9 */ static <K, V> Map<K, V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V v4, K k5, V v5, K k6, V v6) { return new ImmutableCollections.MapN<>(k1, v1, k2, v2, k3, v3, k4, v4, k5, v5, k6, v6); } /** * Returns an unmodifiable map containing seven mappings. * See Unmodifiable Maps for details. * * @param the {@code Map}'s key type * @param the {@code Map}'s value type * @param k1 the first mapping's key * @param v1 the first mapping's value * @param k2 the second mapping's key * @param v2 the second mapping's value * @param k3 the third mapping's key * @param v3 the third mapping's value * @param k4 the fourth mapping's key * @param v4 the fourth mapping's value * @param k5 the fifth mapping's key * @param v5 the fifth mapping's value * @param k6 the sixth mapping's key * @param v6 the sixth mapping's value * @param k7 the seventh mapping's key * @param v7 the seventh mapping's value * @return a {@code Map} containing the specified mappings * @throws IllegalArgumentException if there are any duplicate keys * @throws NullPointerException if any key or value is {@code null} * * @since 9 */ static <K, V> Map<K, V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V v4, K k5, V v5, K k6, V v6, K k7, V v7) { return new ImmutableCollections.MapN<>(k1, v1, k2, v2, k3, v3, k4, v4, k5, v5, k6, v6, k7, v7); } /** * Returns an unmodifiable map containing eight mappings. * See Unmodifiable Maps for details. * * @param the {@code Map}'s key type * @param the {@code Map}'s value type * @param k1 the first mapping's key * @param v1 the first mapping's value * @param k2 the second mapping's key * @param v2 the second mapping's value * @param k3 the third mapping's key * @param v3 the third mapping's value * @param k4 the fourth mapping's key * @param v4 the fourth mapping's value * @param k5 the fifth mapping's key * @param v5 the fifth mapping's value * @param k6 the sixth mapping's key * @param v6 the sixth mapping's value * @param k7 the seventh mapping's key * @param v7 the seventh mapping's value * @param k8 the eighth mapping's key * @param v8 the eighth mapping's value * @return a {@code Map} containing the specified mappings * @throws IllegalArgumentException if there are any duplicate keys * @throws NullPointerException if any key or value is {@code null} * * @since 9 */ static <K, V> Map<K, V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V v4, K k5, V v5, K k6, V v6, K k7, V v7, K k8, V v8) { return new ImmutableCollections.MapN<>(k1, v1, k2, v2, k3, v3, k4, v4, k5, v5, k6, v6, k7, v7, k8, v8); } /** * Returns an unmodifiable map containing nine mappings. * See Unmodifiable Maps for details. * * @param the {@code Map}'s key type * @param the {@code Map}'s value type * @param k1 the first mapping's key * @param v1 the first mapping's value * @param k2 the second mapping's key * @param v2 the second mapping's value * @param k3 the third mapping's key * @param v3 the third mapping's value * @param k4 the fourth mapping's key * @param v4 the fourth mapping's value * @param k5 the fifth mapping's key * @param v5 the fifth mapping's value * @param k6 the sixth mapping's key * @param v6 the sixth mapping's value * @param k7 the seventh mapping's key * @param v7 the seventh mapping's value * @param k8 the eighth mapping's key * @param v8 the eighth mapping's value * @param k9 the ninth mapping's key * @param v9 the ninth mapping's value * @return a {@code Map} containing the specified mappings * @throws IllegalArgumentException if there are any duplicate keys * @throws NullPointerException if any key or value is {@code null} * * @since 9 */ static <K, V> Map<K, V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V v4, K k5, V v5, K k6, V v6, K k7, V v7, K k8, V v8, K k9, V v9) { return new ImmutableCollections.MapN<>(k1, v1, k2, v2, k3, v3, k4, v4, k5, v5, k6, v6, k7, v7, k8, v8, k9, v9); } /** * Returns an unmodifiable map containing ten mappings. * See Unmodifiable Maps for details. * * @param the {@code Map}'s key type * @param the {@code Map}'s value type * @param k1 the first mapping's key * @param v1 the first mapping's value * @param k2 the second mapping's key * @param v2 the second mapping's value * @param k3 the third mapping's key * @param v3 the third mapping's value * @param k4 the fourth mapping's key * @param v4 the fourth mapping's value * @param k5 the fifth mapping's key * @param v5 the fifth mapping's value * @param k6 the sixth mapping's key * @param v6 the sixth mapping's value * @param k7 the seventh mapping's key * @param v7 the seventh mapping's value * @param k8 the eighth mapping's key * @param v8 the eighth mapping's value * @param k9 the ninth mapping's key * @param v9 the ninth mapping's value * @param k10 the tenth mapping's key * @param v10 the tenth mapping's value * @return a {@code Map} containing the specified mappings * @throws IllegalArgumentException if there are any duplicate keys * @throws NullPointerException if any key or value is {@code null} * * @since 9 */ static <K, V> Map<K, V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V v4, K k5, V v5, K k6, V v6, K k7, V v7, K k8, V v8, K k9, V v9, K k10, V v10) { return new ImmutableCollections.MapN<>(k1, v1, k2, v2, k3, v3, k4, v4, k5, v5, k6, v6, k7, v7, k8, v8, k9, v9, k10, v10); } /** * Returns an unmodifiable map containing keys and values extracted from the given entries. * The entries themselves are not stored in the map. * See Unmodifiable Maps for details. * * @apiNote * It is convenient to create the map entries using the {@link Map#entry Map.entry()} method. * For example, * *

{@code
     *     import static java.util.Map.entry;
     *
     *     Map map = Map.ofEntries(
     *         entry(1, "a"),
     *         entry(2, "b"),
     *         entry(3, "c"),
     *         ...
     *         entry(26, "z"));
     * }
* * @param the {@code Map}'s key type * @param the {@code Map}'s value type * @param entries {@code Map.Entry}s containing the keys and values from which the map is populated * @return a {@code Map} containing the specified mappings * @throws IllegalArgumentException if there are any duplicate keys * @throws NullPointerException if any entry, key, or value is {@code null}, or if * the {@code entries} array is {@code null} * * @see Map#entry Map.entry() * @since 9 */
@SafeVarargs @SuppressWarnings("varargs") static <K, V> Map<K, V> ofEntries(Entry<? extends K, ? extends V>... entries) { if (entries.length == 0) { // implicit null check of entries array return ImmutableCollections.emptyMap(); } else if (entries.length == 1) { // implicit null check of the array slot return new ImmutableCollections.Map1<>(entries[0].getKey(), entries[0].getValue()); } else { Object[] kva = new Object[entries.length << 1]; int a = 0; for (Entry<? extends K, ? extends V> entry : entries) { // implicit null checks of each array slot kva[a++] = entry.getKey(); kva[a++] = entry.getValue(); } return new ImmutableCollections.MapN<>(kva); } } /** * Returns an unmodifiable {@link Entry} containing the given key and value. * These entries are suitable for populating {@code Map} instances using the * {@link Map#ofEntries Map.ofEntries()} method. * The {@code Entry} instances created by this method have the following characteristics: * *
    *
  • They disallow {@code null} keys and values. Attempts to create them using a {@code null} * key or value result in {@code NullPointerException}. *
  • They are unmodifiable. Calls to {@link Entry#setValue Entry.setValue()} * on a returned {@code Entry} result in {@code UnsupportedOperationException}. *
  • They are not serializable. *
  • They are value-based. * Callers should make no assumptions about the identity of the returned instances. * This method is free to create new instances or reuse existing ones. Therefore, * identity-sensitive operations on these instances (reference equality ({@code ==}), * identity hash code, and synchronization) are unreliable and should be avoided. *
* * @apiNote * For a serializable {@code Entry}, see {@link AbstractMap.SimpleEntry} or * {@link AbstractMap.SimpleImmutableEntry}. * * @param the key's type * @param the value's type * @param k the key * @param v the value * @return an {@code Entry} containing the specified key and value * @throws NullPointerException if the key or value is {@code null} * * @see Map#ofEntries Map.ofEntries() * @since 9 */
static <K, V> Entry<K, V> entry(K k, V v) { // KeyValueHolder checks for nulls return new KeyValueHolder<>(k, v); } /** * Returns an unmodifiable Map containing the entries * of the given Map. The given Map must not be null, and it must not contain any * null keys or values. If the given Map is subsequently modified, the returned * Map will not reflect such modifications. * * @implNote * If the given Map is an unmodifiable Map, * calling copyOf will generally not create a copy. * * @param the {@code Map}'s key type * @param the {@code Map}'s value type * @param map a {@code Map} from which entries are drawn, must be non-null * @return a {@code Map} containing the entries of the given {@code Map} * @throws NullPointerException if map is null, or if it contains any null keys or values * @since 10 */ @SuppressWarnings({"rawtypes","unchecked"}) static <K, V> Map<K, V> copyOf(Map<? extends K, ? extends V> map) { if (map instanceof ImmutableCollections.AbstractImmutableMap) { return (Map<K,V>)map; } else { return (Map<K,V>)Map.ofEntries(map.entrySet().toArray(new Entry[0])); } } }

你可能感兴趣的:(JDK11源码学习)