Android消息机制可以说是众人皆知了,作为一个Android开发者没用过是不可能的。其原理相对是一个比较简单的内容。本篇文章我们来进行一个简单的梳理。在消息机制中我们主要有下面几块内容需要掌握。
- Handler:一个发送和处理消息的类,其依赖于Looper构建,如果他所在的线程中没有Looper就会出现异常。而消息的处理也是在looper所在的线程。
- Looper,一个无限循环器,循环去拿MessageQueue中的message。
- MessageQueue,消息队列。单链表形式存储Message。
- ThreadLoacal:此内容可查看另一篇文章:ThreadLocal全面解析。
1、首先我们来看消息队列MessageQueue,它提供了插入消息,和拿出消息的两个方法。分别是enqueueMessage,next
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
根据这个方法我们可以看到,我们的MessageQueue是以单链表形式存储我们的消息的,并且,当我们的消息都是立即发送的时候,会把消息存储在链表第一个位置,当我们发送延时消息的时候,会根据延时的时间大小将我们的消息存放在链表中。时间小的在链表前面。
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}
通过next方法源码我们可以看出,是一个无线循环的方法,一直去消息队列中取消息,如果没有消息将会阻塞在这里,有消息了就会跳出循环,返回消息并把消息从消息队列中删除。
- Looper消息循环,我们知道如果我们在一个子线程中创建Handler,如果在这个线程中没有调用 Looper.prepare();的话会发生"Can't create handler inside thread that has not called Looper.prepare()"的异常,因为Handler是依赖Looper存在的,但是为什么我们在主线程中创建Handler没有调用 Looper.prepare();就可以呢?那是因为我们的系统在AcitivityThread的Main方法中默认调用了Looper.prepareMainLooper();其原理也是调用了prepare方法。
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
在这个方法中我们可以看到 它创建了一个Looper实例放在了我们的ThreadLocal中。
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
而我们创建Looper的同时还创建了我们的MessageQueue.所以我们子线程的消息队列和主线程的消息队列不是同一个。Looper也不是同一个。
我们知道当我们执行了Looper.prepare();方法创建了Looper之后,它并没有真正的开始工作,还没有循环起来去拿队列中的消息进行处理。我们还需要调用Looper.loop();方法。
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
final long traceTag = me.mTraceTag;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
final long end;
try {
msg.target.dispatchMessage(msg);
end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (slowDispatchThresholdMs > 0) {
final long time = end - start;
if (time > slowDispatchThresholdMs) {
Slog.w(TAG, "Dispatch took " + time + "ms on "
+ Thread.currentThread().getName() + ", h=" +
msg.target + " cb=" + msg.callback + " msg=" + msg.what);
}
}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
从loop方法中我们可以看出loop方法是一个无线循环的方法,在循环里面会调用消息队列的next方法获取消息,并调用msg.target.dispatchMessage(msg);处理消息,而跳出循环的条件是msg==null,但是通过我们之前对消息队列next方法的分析,我们知道,next方法也是一个无线循环的方法,并且在消息队列中没有消息的时候一直循环去拿消息,直到拿到消息。所以loop方法会阻塞在那里,等待消息队列返回消息。那么什么时候next才能返回null呢。其实当我们loop调用quit()或者quitSafely()。就会调用我们的消息队列的quit()方法,这时,消息队列返回消息就会是null。
我们来看一下这两个方法
class Looper
public void quit() {
mQueue.quit(false);
}
public void quitSafely() {
mQueue.quit(true);
}
class MessageQueue
void quit(boolean safe) {
if (!mQuitAllowed) {
throw new IllegalStateException("Main thread not allowed to quit.");
}
synchronized (this) {
if (mQuitting) {
return;
}
mQuitting = true;
if (safe) {
removeAllFutureMessagesLocked();
} else {
removeAllMessagesLocked();
}
// We can assume mPtr != 0 because mQuitting was previously false.
nativeWake(mPtr);
}
}
从上面的代码中我们可以看出当我们Looper进行quit或者quitSafely的时候实际上是调用MessageQueue的removeAllMessagesLocked()和removeAllFutureMessagesLocked();
class MessageQueue
private void removeAllMessagesLocked() {
Message p = mMessages;
while (p != null) {
Message n = p.next;
p.recycleUnchecked();
p = n;
}
mMessages = null;
}
private void removeAllFutureMessagesLocked() {
final long now = SystemClock.uptimeMillis();
Message p = mMessages;
if (p != null) {
if (p.when > now) {
removeAllMessagesLocked();
} else {
Message n;
for (;;) {
n = p.next;
if (n == null) {
return;
}
if (n.when > now) {
break;
}
p = n;
}
p.next = null;
do {
p = n;
n = p.next;
p.recycleUnchecked();
} while (n != null);
}
}
}
class Message
void recycleUnchecked() {
// Mark the message as in use while it remains in the recycled object pool.
// Clear out all other details.
flags = FLAG_IN_USE;
what = 0;
arg1 = 0;
arg2 = 0;
obj = null;
replyTo = null;
sendingUid = -1;
when = 0;
target = null;
callback = null;
data = null;
synchronized (sPoolSync) {
if (sPoolSize < MAX_POOL_SIZE) {
next = sPool;
sPool = this;
sPoolSize++;
}
}
}
通过上面的两个方法的源码我们可以看出,Looper的quit方法会直接将我们消息队列中的消息调用recycleUnchecked()方法将所有消息的内容消除,导致我们的消息无法进行处理。并且,不允许再往消息队列中插入新的消息,直到我们消息队列中没有消息之后,MessageQueue的next就会返回null,然后我们的Looper就会停止循环,而我们的removeAllFutureMessagesLocked是把所有的消息和当前时间进行比较,来比较是否是延迟消息如果是延迟消息,将之后的延迟消息的消息内容制空。
- Handler,发送和处理消息的方法。其中有很多可以发送消息的方法。
public final boolean post(Runnable r);
public final boolean postAtTime(Runnable r, long uptimeMillis);
public final boolean postAtTime(Runnable r, Object token, long uptimeMillis);
public final boolean postDelayed(Runnable r, long delayMillis);
public final boolean sendMessage(Message msg);
public final boolean sendEmptyMessage(int what);
public final boolean sendEmptyMessageDelayed(int what, long delayMillis) ;
public final boolean sendEmptyMessageAtTime(int what, long uptimeMillis);
public final boolean sendMessageDelayed(Message msg, long delayMillis);
public boolean sendMessageAtTime(Message msg, long uptimeMillis);
发送消息的方法有很多,但是通过源码我们可以看出他们是有关系的,比如post方法都会默认调用sendMessageDelayed方法,而sendMessageDelayed方法又会默认去调用sendEmptyMessageAtTime方法。sendMessageDelayed和sendEmptyMessageAtTime方法的区别并不大,sendMessageDelayed的延时事件参数是一个相对时间,相对于现在1000毫秒,而sendEmptyMessageAtTime的参数是一个绝对时间,是以系统开机时间开始(去除休眠时间)的一个绝对时间。
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
而Post系列方法和send系列方法的区别为 post系列方法参数为Runnable他会创建一个Massage并把runnable复制给msg.callback,并且将我们的发送消息的Handler复制给我们的Message的target 参数。通过发送消息的源码我们可以看出最终会调用消息队列的enqueueMessage方法将消息放到消息队列当中,通过上面我们对Looper的分析我们知道,当Looper取到消息的时候会调用msg.target.dispatchMessage(msg);来处理消息,其实就是调用我们发送消息的Handler的dispatchMessage方法来处理消息。
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
通过上面的方法我们可以看出,当消息有CallBack时候,就会执行消息的CallBack,如果没有将会查看mCallback,mCallback其实就是我们创建Handler的时候Handler构造方法中的Runnable,如果mCallback返回true的话我们Handler的handleMessage方法就不会执行,如果mCallback返回为false的话我们的handleMessage就会执行了。