producer参数说明
#指定kafka节点列表,用于获取metadata,不必全部指定
metadata.broker.list=192.168.2.105:9092,192.168.2.106:9092
# 指定分区处理类。默认kafka.producer.DefaultPartitioner,表通过key哈希到对应分区
#partitioner.class=com.meituan.mafka.client.producer.CustomizePartitioner
# 是否压缩,默认0表示不压缩,1表示用gzip压缩,2表示用snappy压缩。压缩后消息中会有头来指明消息压缩类型,故在消费者端消息解压是透明的无需指定。
compression.codec=none
# 指定序列化处理类(mafka client API调用说明-->3.序列化约定wiki),默认为kafka.serializer.DefaultEncoder,即byte[]
serializer.class=com.meituan.mafka.client.codec.MafkaMessageEncoder
# serializer.class=kafka.serializer.DefaultEncoder
# serializer.class=kafka.serializer.StringEncoder
# 如果要压缩消息,这里指定哪些topic要压缩消息,默认empty,表示不压缩。
#compressed.topics=
########### request ack ###############
# producer接收消息ack的时机.默认为0.
# 0: producer不会等待broker发送ack
# 1: 当leader接收到消息之后发送ack
# 2: 当所有的follower都同步消息成功后发送ack.
request.required.acks=0
# 在向producer发送ack之前,broker允许等待的最大时间
# 如果超时,broker将会向producer发送一个error ACK.意味着上一次消息因为某种
# 原因未能成功(比如follower未能同步成功)
request.timeout.ms=10000
########## end #####################
# 同步还是异步发送消息,默认“sync”表同步,"async"表异步。异步可以提高发送吞吐量,
# 也意味着消息将会在本地buffer中,并适时批量发送,但是也可能导致丢失未发送过去的消息
producer.type=sync
############## 异步发送 (以下四个异步参数可选) ####################
# 在async模式下,当message被缓存的时间超过此值后,将会批量发送给broker,默认为5000ms
# 此值和batch.num.messages协同工作.
queue.buffering.max.ms = 5000
# 在async模式下,producer端允许buffer的最大消息量
# 无论如何,producer都无法尽快的将消息发送给broker,从而导致消息在producer端大量沉积
# 此时,如果消息的条数达到阀值,将会导致producer端阻塞或者消息被抛弃,默认为10000
queue.buffering.max.messages=20000
# 如果是异步,指定每次批量发送数据量,默认为200
batch.num.messages=500
# 当消息在producer端沉积的条数达到"queue.buffering.max.meesages"后
# 阻塞一定时间后,队列仍然没有enqueue(producer仍然没有发送出任何消息)
# 此时producer可以继续阻塞或者将消息抛弃,此timeout值用于控制"阻塞"的时间
# -1: 无阻塞超时限制,消息不会被抛弃
# 0:立即清空队列,消息被抛弃
queue.enqueue.timeout.ms=-1
################ end ###############
# 当producer接收到error ACK,或者没有接收到ACK时,允许消息重发的次数
# 因为broker并没有完整的机制来避免消息重复,所以当网络异常时(比如ACK丢失)
# 有可能导致broker接收到重复的消息,默认值为3.
message.send.max.retries=3
# producer刷新topic metada的时间间隔,producer需要知道partition leader的位置,以及当前topic的情况
# 因此producer需要一个机制来获取最新的metadata,当producer遇到特定错误时,将会立即刷新
# (比如topic失效,partition丢失,leader失效等),此外也可以通过此参数来配置额外的刷新机制,默认值600000
topic.metadata.refresh.interval.ms=60000
consumer参数说明
# zookeeper连接服务器地址,此处为线下测试环境配置(kafka消息服务-->kafka broker集群线上部署环境wiki)
# 配置例子:"127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002"
zookeeper.connect=192.168.2.225:2181,192.168.2.225:2182,192.168.2.225:2183/config/mobile/mq/mafka
# zookeeper的session过期时间,默认5000ms,用于检测消费者是否挂掉,当消费者挂掉,其他消费者要等该指定时间才能检查到并且触发重新负载均衡
zookeeper.session.timeout.ms=5000
zookeeper.connection.timeout.ms=10000
# 指定多久消费者更新offset到zookeeper中。注意offset更新时基于time而不是每次获得的消息。一旦在更新zookeeper发生异常并重启,将可能拿到已拿到过的消息
zookeeper.sync.time.ms=2000
#指定消费组
group.id=xxx
# 当consumer消费一定量的消息之后,将会自动向zookeeper提交offset信息
# 注意offset信息并不是每消费一次消息就向zk提交一次,而是现在本地保存(内存),并定期提交,默认为true
auto.commit.enable=true
# 自动更新时间。默认60 * 1000
auto.commit.interval.ms=1000
# 当前consumer的标识,可以设定,也可以有系统生成,主要用来跟踪消息消费情况,便于观察
conusmer.id=xxx
# 消费者客户端编号,用于区分不同客户端,默认客户端程序自动产生
client.id=xxxx
# 最大取多少块缓存到消费者(默认10)
queued.max.message.chunks=50
# 当有新的consumer加入到group时,将会reblance,此后将会有partitions的消费端迁移到新
# 的consumer上,如果一个consumer获得了某个partition的消费权限,那么它将会向zk注册
# "Partition Owner registry"节点信息,但是有可能此时旧的consumer尚没有释放此节点,
# 此值用于控制,注册节点的重试次数.
rebalance.max.retries=5
# 获取消息的最大尺寸,broker不会像consumer输出大于此值的消息chunk
# 每次feth将得到多条消息,此值为总大小,提升此值,将会消耗更多的consumer端内存
fetch.min.bytes=6553600
# 当消息的尺寸不足时,server阻塞的时间,如果超时,消息将立即发送给consumer
fetch.wait.max.ms=5000
socket.receive.buffer.bytes=655360
# 如果zookeeper没有offset值或offset值超出范围。那么就给个初始的offset。有smallest、largest、
# anything可选,分别表示给当前最小的offset、当前最大的offset、抛异常。默认largest
auto.offset.reset=smallest
# 指定序列化处理类(mafka client API调用说明-->3.序列化约定wiki),默认为kafka.serializer.DefaultDecoder,即byte[]
derializer.class=com.meituan.mafka.client.codec.MafkaMessageDecoder