- AI编剧系统深度解析:从算法架构到影视工业化应用实战
Coderabo
DeepSeekR1模型企业级应用人工智能算法
媒体娱乐行业革命:AI编剧创意辅助系统架构解析与实战应用一、行业背景与技术架构在流媒体内容需求激增的当下,传统编剧模式面临产能瓶颈。AI编剧创意辅助系统通过自然语言处理(NLP)、生成对抗网络(GAN)和知识图谱技术,构建了包含剧本生成、情节优化、角色塑造等模块的智能创作平台。核心架构分为:知识图谱层:整合影视剧本数据库(IMSDb)、维基百科等结构化数据NLP处理层:基于Transformer的
- 如果MLlib 中没有所需要的模型,如何使用 Spark 进行分布式训练?
是纯一呀
WSLDockerAIspark分布式mllib
如果MLlib中没有你所需要的模型,并且不打算结合更强大的框架(如TensorFlowOnSpark或Horovod),仍然可以使用Spark进行分布式训练,但需要手动处理训练任务的分配、数据准备、模型训练、结果合并和模型更新等过程。模型训练阶段将模型的训练任务分配到Spark集群的各个节点。数据并行:每个节点会处理数据的不同部分,并计算该部分的梯度或模型参数。自定义算法:如果使用的是自定义算法(
- 【分布式理论12】事务协调者高可用:分布式选举算法
roman_日积跬步-终至千里
分布式架构分布式算法
文章目录一、分布式系统中事务协调的问题二、分布式选举算法1.Bully算法2.Raft算法3.ZAB算法三、小结与比较一、分布式系统中事务协调的问题在分布式系统中,常常有多个节点(应用)共同处理不同的事务和资源。前文【分布式理论9】分布式协同:分布式系统进程互斥与互斥算法【分布式理论10】分布式协同:分布式互斥算法最佳实现:分布式锁的原理与实现【分布式理论11】分布式协同之分布式事务中介绍了分布式
- 设计模式-模板方法实现
阿绵
设计模式java开发语言
文章目录模式结构模式特点示例代码输出结果关键点解析模式的优缺点使用场景总结模板方法模式(TemplateMethodPattern)是一种行为型设计模式,它定义了一个操作中的算法骨架,而将某些步骤的实现延迟到子类中。通过这种方式,模板方法模式可以让子类在不改变算法结构的情况下,重新定义算法中的某些步骤模式结构模板方法模式的结构包括以下几个关键部分:抽象类(AbstractClass):定义算法的骨
- 数据库基础以及 MySQL 知识点
阿绵
计算机基础数据库mysql
文章目录1、基本概念2、主键和外键的区别2.1、使用外键的优劣3、数据库范式4、drop、delete与truncate区别?5、MySQL1、基础概念2、存储引擎2.1、InnoDB和MyISAM区别2.2、InnoDB如何保持事务的四大特性(实现事务的原理)3、锁机制与InnoDB锁算法3.1、表级锁和行级锁对比4、事务4.1、ACID特性4.2、并发事务带来的问题4.3、事务隔离级别1、基本
- yolov8人脸识别与脸部关键点检测(代码+原理)
QQ_1309399183
计算机视觉实战项目集锦YOLO人工智能人脸识别yolo人脸检测
YOLOv8脸部识别是一个基于YOLOv8算法的人脸检测项目,旨在实现快速、准确地检测图像和视频中的人脸。该项目是对YOLOv8算法的扩展和优化,专门用于人脸检测任务。YOLOv8是一种基于深度学习的目标检测算法,通过将目标检测问题转化为一个回归问题,可以实现实时的目标检测。YOLOv8Face项目在YOLOv8的基础上进行了改进,使其更加适用于人脸检测。以下是YOLOv8Face项目的一些特点和
- 基于Python的搜索引擎的设计与实现
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
搜索引擎,Python,爬虫,自然语言处理,信息检索,索引,算法,数据库1.背景介绍在信息爆炸的时代,海量数据无处不在,高效地获取所需信息变得至关重要。搜索引擎作为信息获取的桥梁,扮演着不可或缺的角色。传统的搜索引擎往往依赖于庞大的服务器集群和复杂的算法,对资源消耗较大,且难以满足个性化搜索需求。基于Python的搜索引擎设计,则凭借Python语言的易学易用、丰富的第三方库和强大的社区支持,为开
- 27岁大龄转码秋招惨败,朋友劝我转Java来得及吗?还是继续走前端或机器学习?
程序员yt
java机器学习开发语言
今天给大家分享的是一位粉丝的提问,27岁大龄转码秋招惨败,朋友劝我转Java来得及吗?还是继续走前端或机器学习?接下来把粉丝的具体提问和我的回复分享给大家,希望也能给一些类似情况的小伙伴一些启发和帮助。同学提问:211建筑本科,22年毕业后gap一年转码去了英国读的QS100的it的水硕(24年12月份毕业),转码后对就业形势认知不足,时间全花在课业上,八股文和算法准备的不充足,秋招算是惨败。读研
- 分布式理论与分布式算法
红衣女妖仙
springcloud分布式分布式定理分布式算法
分布式定义、主要目标、优缺点、与集中式区别;分布式CAP定理、PACELC理论、BASE理论的核心观点、应用场景等;分布式算法如Paxos算法、Raft算法、Gossip算法、两阶段提交(2PC)、三阶段提交(3PC)、一致性哈希算法、Bully算法、Chord算法等算法的核心思想、角色、算法过程、特性、应用场景和变种等。——2025年2月3日甲辰年正月初六立春目录1分布式1.1分布式定义1.
- 华为的云端训练算力与迭代效率
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
华为云、云端训练、算力、迭代效率、人工智能、深度学习、模型训练、分布式训练、优化算法1.背景介绍人工智能(AI)技术近年来发展迅速,深度学习作为其核心驱动力,在图像识别、自然语言处理、语音识别等领域取得了突破性进展。然而,深度学习模型的训练需要海量数据和强大的计算资源,这成为AI技术发展面临的瓶颈之一。云计算作为一种新型的计算模式,为深度学习提供了强大的算力支持。华为云作为国内领先的云计算平台,在
- 【深度学习】学习率调度策略
黑白交界
深度学习学习深度学习
什么是学习率可以理解为模型在每一次迭代中的模型更新调整的幅度,“学习”新信息的速度。学习率定义了模型权重(参数)在梯度下降或其他优化算法中的更新步伐。较大的学习率意味着在每次参数更新时,模型会进行更大幅度的调整,而较小的学习率则意味着细致的、渐进的调整。适当的学习率可以帮助模型跳出局部最优解。当使用较大的学习率时,模型有可能跨越一些小的局部最优,从而找到全局最优解,但也有可能错过全局最优。因此,在
- 【核心算法篇七】《DeepSeek异常检测:孤立森林与AutoEncoder对比》
再见孙悟空_
「2025DeepSeek技术全景实战」算法分布式docker计算机视觉人工智能自然语言处理DeepSeek
大家好,今天我们来深入探讨一下《DeepSeek异常检测:孤立森林与AutoEncoder对比》这篇技术博客。我们将从核心内容、原理、应用场景等多个方面进行详细解析,力求让大家对这两种异常检测方法有一个全面而深入的理解。一、引言在数据科学和机器学习领域,异常检测(AnomalyDetection)是一个非常重要的任务。它的目标是从数据集中识别出那些与大多数数据显著不同的异常点。这些异常点可能是由于
- 【c++】容器:vector、list、map
大姨妈V
c++【c++从入门到精通】学习笔记
【c++】容器1.容器2.顺序容器3.向量4.双向链表5.关联容器6.映射参考:《c++从入门到精通》人民邮电出版社标准模板库STL的c++最有特色、最实用的部分之一。标准模板库包含了容器类、迭代器和算法三部分。容器:容器就是可以用于存放各种类型数据的数据结构。迭代器:迭代器可依次存取容器中的元素,在C++中称迭代器为指针,它们提供了访问容器、序列中每个元素的方法。算法:是用来操作容器中的元素的函
- STL-vector,set,string,map,queue,priority_queue,stack,pair算法笔记
cloudless_sky
STLc++stl
STL:standardtemplatelibrary标准模板库,封装了很多实用的容器。(一)vectorvector是一个容器。是个类。底层数据结构是数组。vector:向量,变长数组,即“长度根据需要而自动改变的数组”。使用前提:#includeusingnamespacestd;1、vector定义vectorname;以上是长度可以根据需要变化的一位数组,typename可以是任何基本类型
- Java开发实习面试笔试题(含答案)
小钊(求职中)
java面试开发语言springspringbootmaventomcat
在广州一家中大公司面试(BOSS标注是1000-9999人,薪资2-3k),招聘上写着Java开发,基本没有标注前端要求,但是到场知道是前后端分离人不分离。开始先让你做笔试(12道问答+4道SQL题),接着面试也是八股文之类的,没有问项目,没有做算法,现分享笔试和面试题目给大家做参考。(基础的没复习忘了不会,只会几道感觉已经寄了,最重要的是前端基本不会)一、笔试内容1.Java有哪些数据类型,什么
- 深度学习torch之19种优化算法(optimizer)解析
@Mr_LiuYang
论文阅读深度学习optimizerAdam学习率调整优化算法
提示:有谬误请指正摘要本博客详细介绍了多种常见的深度学习优化算法,包括经典的LBFGS、Rprop、Adagrad、RMSprop、Adadelta、ASGD、Adamax、Adam、AdamW、NAdam、RAdam以及SparseAdam等,通过对这些算法的公式和参数说明进行详细解析,博客旨在为机器学习工程师和研究人员提供清晰的理论指导,帮助读者选择合适的优化算法提升模型训练效率。父类定义Op
- ranges::set_intersection set_union set_difference set_symmetric_difference
大树青云
C++20C++set_union
std::ranges::set_intersection:是C++20引入的一个算法,用于计算两个已排序范围的交集。它将两个范围的交集元素复制到输出范围中。std::ranges::set_intersection用于计算两个已排序范围的交集。它将两个范围的交集元素复制到输出范围中。注意事项输入范围必须已排序。目标范围必须有足够空间存储交集结果。交集结果默认按升序排列。若元素重复,交集次数取两范
- 深度优先探索
^O^凡人多烦事
深度优先算法
DFS:时间复杂度:一位数组:O(n)二维数组+标记:O(n^2),有时候还可能使O(2^n),总而言之DFS的时间复杂度比较高。(个人认为)深度优先搜索算法(DFS)原理:深度优先搜索(DepthFirstSearch,DFS)是一种用于遍历或搜索树或图的算法。该方法从根节点(选择任意一个顶点作为起始节点,在无向图中适用)开始,尽可能深地沿着每条分支进行探索直到不能再前进为止;之后回退并重复这一
- 常用的高性能计算工具有哪些
这题有点难度
人工智能学习
在当今数字化时代,高性能计算(HPC)已成为推动科学、工程、技术以及商业创新的核心力量。无论是模拟宇宙的起源、设计新型航空器,还是训练复杂的人工智能模型,HPC都扮演着不可或缺的角色。本文将深入探讨高性能计算的定义、其背后的强大工具,以及它们如何助力各领域的突破性发展。一、高性能计算:定义与意义高性能计算(HPC)是一种利用超级计算机或大规模集群来处理复杂计算任务的技术。它通过并行计算和优化算法,
- 关于滑动窗口算法--最小替换字串长度
幼儿园口算大王
算法java数据结构滑动窗口
个人觉得日常遇到的关于滑动窗口的算法题主要分两种:固定窗口大小的滑动窗口在固定窗口大小的滑动窗口问题中,窗口的大小是预先定义好的,不会改变。这种类型的问题是相对简单的,因为一旦确定了窗口的大小,就可以直接遍历数组或列表,每次移动窗口一个元素的位置。常见的问题包括:最大/最小子数组和:给定一个数组和一个固定大小的窗口,找到所有可能的窗口的最大/最小和。窗口内元素的统计:例如,统计窗口内奇数或偶数元素
- 只能说算法做题全凭运气
幼儿园口算大王
算法java开发语言
问题描述在一款多人游戏中,每局比赛需要多个玩家参与。如果发现两名玩家至少一起玩过两局比赛,则可以认为这两名玩家互为队友。现在你有一份玩家(通过玩家ID标识)和比赛局次(通过比赛ID标识)的历史记录表,目标是帮助某位指定玩家找到所有符合条件的队友。例如样例1,已知以下比赛历史记录:玩家ID游戏ID11121321243241425253我们需要帮助ID为1的玩家找到所有至少与其一起玩过两次比赛的队友
- 动态规划算法套路解析
xl.liu
算法动态规划
动态规划概述动态规划是一种用于解决最优化问题的算法技术,它通过将复杂的问题分解为更简单的子问题,并利用这些子问题的解来构建原始问题的解。动态规划特别适用于那些拥有最优子结构和重叠子问题特性的问题。所谓最优子结构是指一个问题的最优解可以通过其子问题的最优解组合而成;而重叠子问题则意味着在求解过程中会多次遇到相同的子问题。解题套路框架面对一个动态规划问题时,通常可以遵循以下四个步骤来进行思考与解答:定
- Winograd 算法原理推导和python程序
weixin_47696437
算法python人工智能
一、算法背景Winograd算法是一种用于高效计算卷积的算法,其核心思想是通过减少乘法运算的次数来提高卷积计算的效率。在传统的卷积计算中,乘法运算的开销较大,而Winograd算法通过巧妙的变换,将卷积运算转化为在变换域中的矩阵乘法,从而减少乘法的数量,虽然会引入一些额外的加法和变换操作,但整体上在计算效率上有显著提升。二、一维卷积的Winograd推导2.Winograd优化通过多项式变换减少乘
- 国密算法SM1 SM2 SM3 SM4 SM9
象话
算法国密算法SM2SM3SM4
一、概述SM1-无具体实现SM1作为一种对称加密算法,由于其算法细节并未公开,且主要在中国国内使用,因此在国际通用的加密库(如BouncyCastle)中并不直接支持SM1算法。SM1算法的具体实现涉及国家密码管理局的规范,通常需要使用国家指定的安全模块(如SSF33、SC1/SC2卡)或通过国家认证的加密硬件/软件产品来实现。不过,如果你有合法授权并且在合规的环境下需要使用SM1算法,可能需要依
- [总结] 音视频开发工程师之路
二进制怪兽
音视频音视频
前言音视频开发是一个涉及多个技术领域的复杂方向,涵盖了音频处理、视频渲染、编解码技术、流媒体传输等多个方面。以下是一个简要的学习路线指南,帮助你逐步掌握音视频开发的核心技能。基础知识计算机科学基础:掌握操作系统、计算机网络、数据结构和算法等基础知识。数学基础:了解傅里叶变换、线性代数、信号处理等数学知识,这些是音视频编-解码和处理的基石。编程语言:熟练掌握C/C++,这是音视频开发中最常用的语言;
- 量子计算威胁下Java应用的安全防护:技术剖析与实践
老猿讲编程
量子计算java安全
在科技飞速发展的当下,众多公司与研究团队全力投入实现量子霸权的研究,使得量子计算机超越传统计算机运算效率的未来愈发临近。量子计算虽蕴含着巨大的潜力,但也给现有加密体系带来了严峻挑战。一旦量子计算机具备破解当前加密算法的能力,大量基于现有加密技术保护的数据和通信都将面临风险,“先窃取,后解密”的攻击策略可能成为现实。在此背景下,Java应用如何构建有效的防御机制,抵御量子攻击,成为了亟待解决的关键问
- 国密算法SM1、SM2、SM3和SM4 具体的使用和区别
iOS开发的小学生
算法国密加密sm1sm2sm3sm4
国密算法是中国自主研发的密码算法,包括SM1、SM2、SM3和SM4,分别用于不同场景。以下是它们的具体使用和区别:SM1对称加密算法类型:对称加密密钥长度:128位使用场景:用于数据加密和解密,适用于金融、政务等领域。特点:安全性高,但算法未公开,需通过硬件加密设备使用。SM2非对称加密算法类型:非对称加密密钥长度:256位使用场景:用于数字签名、密钥交换和加密通信,适用于电子认证、电子商务等。
- c/c++蓝桥杯经典编程题100道(22)最短路径问题
tamak
算法数据结构图论c语言c++蓝桥杯
最短路径问题->返回c/c++蓝桥杯经典编程题100道-目录目录最短路径问题一、题型解释二、例题问题描述三、C语言实现解法1:Dijkstra算法(正权图,难度★★)解法2:Bellman-Ford算法(含负权边,难度★★★)四、C++实现解法1:Dijkstra算法(优先队列优化,难度★★☆)解法2:Floyd-Warshall算法(多源最短路径,难度★★★)五、总结对比表六、特殊方法与内置函数
- AI技术在音乐产品中有哪些应用场景?
大数据人工智能音乐大数据
自动标注、平滑过渡、音乐鉴权、AI创作,当AI技术应用于音乐行业为人类的精神文化与娱乐生活带来便利和更多选择时,也是一件让人激动不已的事情。随着深度学习算法的出现、大数据和5G技术的成熟,AI人工智能已逐渐融入我们的生产生活中,在教育、医疗、政务办公、城市管理等多个方面发挥作用。随着AI技术在音乐行业研究及应用的深入,音乐人工智能已经不新鲜,很多新的应用和产品已经惊艳亮相。基于对于音乐技术及产品的
- 力扣面试经典算法150题:跳跃游戏 II
明月望秋思
Java学习算法算法leetcode面试java
跳跃游戏II今天的题目是力扣面试经典150题中的数组的中等难度题:跳跃游戏II。题目链接:https://leetcode.cn/problems/jump-game-ii/description/?envType=study-plan-v2&envId=top-interview-150题目描述给定一个非负整数数组nums,你最初位于数组的第一个位置。每个元素代表你在该位置可以跳跃的最大长度。你
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。