codeforces 429B B. Working out(dp)

题目链接:

codeforces 429B


题目大意:

给出一个矩阵,一个人从左上角走到右下角,一个人从左下角走到右上角,两个人只会在一个点相交,问两个人经过路径上的数的和最大的情况下最大和是多少。


题目分析:

  • 可以分别从四个角出发进行动态规划,dp[k][i][j]代表从第k个角出发到达i和j得到的最大的数。
  • 枚举每一个点,然后枚举从四个角同时到大这个点的情况,只能是左上角从左侧或上侧到,右下角从右侧或下侧到,其他同理,因为只在所枚举的点相交,所以我们可以认为,左上角如果从左侧进入,因为左小也要到达这个点,所以右下角的点必须从右侧进入。同理,右上角的必须从上侧进入,如果左上角从上侧进入,同理会发现,起始只有一种情况。
  • 题目不难,但是要细心,耐心地写。

AC代码:

#include 
#include 
#include 
#include 
#define MAX 1007

using namespace std;

int n,m;
int a[MAX][MAX];
int u,v;
int dp[4][MAX][MAX];

int main ( )
{
    while ( ~scanf ( "%d%d" , &n , &m ) )
    {
        for ( int i = 1 ; i <= n ; i++ )
            for ( int j = 1 ; j <= m ; j++ )
                scanf ( "%d" , &a[i][j] );
        for ( int i = 1 ; i <= n ; i++ )
            for ( int j = 1 ; j <= m ; j++ )
            {
                dp[0][i][j] = 0;
                if ( i > 1 ) 
                    dp[0][i][j] = max ( dp[0][i-1][j] , dp[0][i][j] );
                if ( j > 1 ) 
                    dp[0][i][j] = max ( dp[0][i][j-1] , dp[0][i][j] );
                dp[0][i][j] += a[i][j];
            }
        for ( int i = n ; i >= 1 ; i-- )
            for ( int j = 1 ; j <= m ; j++ )
            {
                dp[1][i][j] = 0;
                if ( i < n )
                    dp[1][i][j] = max ( dp[1][i+1][j] , dp[1][i][j] );
                if ( j > 1 )
                    dp[1][i][j] = max ( dp[1][i][j-1] , dp[1][i][j] );
                dp[1][i][j] += a[i][j];
            }
        for ( int i = 1 ; i <= n ; i++ )
            for ( int j = m ; j >= 1 ; j-- )
            {
                dp[2][i][j] = 0;
                if ( i > 1 )
                    dp[2][i][j] = max ( dp[2][i-1][j] , dp[2][i][j] );
                if ( j < m )
                    dp[2][i][j] = max ( dp[2][i][j+1] , dp[2][i][j] );
                dp[2][i][j] += a[i][j];
            } 
        for ( int i = n ; i >= 1 ; i-- )
            for ( int j = m ; j >= 1 ; j-- )
            {
                dp[3][i][j] = 0;
                if ( i < n )
                    dp[3][i][j] = max ( dp[3][i+1][j] , dp[3][i][j] );
                if ( j < m )
                    dp[3][i][j] = max ( dp[3][i][j+1] , dp[3][i][j] );
                dp[3][i][j] += a[i][j];
            }
        /*for ( int i = 1 ; i <= n ; i++ )
            for ( int j = 1 ; j <= m ; j++ )
            {
                dp[0][i][j+1] = max ( dp[0][i][j+1] , dp[0][i][j] + a[i][j+1] );
                dp[0][i+1][j] = max ( dp[0][i+1][j] , dp[0][i][j] + a[i+1][j] );
            }

        for ( int i = 1 ; i <= n ; i++ )
            for ( int j = m ; j >= 1; j-- )
            {
                dp[2][i][j-1] = max ( dp[2][i][j-1] , dp[2][i][j] + a[i][j-1] );
                dp[2][i+1][j] = max ( dp[2][i+1][j] , dp[2][i][j] + a[i+1][j] );
            }

        for ( int i = n ; i >= 1 ; i-- )
            for ( int j = 1 ; j <= m ; j++ )
            {
                dp[1][i][j+1] = max ( dp[1][i][j+1] , dp[1][i][j] + a[i][j+1] );
                dp[1][i-1][j] = max ( dp[1][i-1][j] , dp[1][i][j] + a[i-1][j] );
            }

        for ( int i = n ; i >= 1 ; i-- )
            for ( int j = n ; j >= 1 ; j-- )
            {
                dp[3][i][j-1] = max ( dp[3][i][j-1] , dp[3][i][j] + a[i][j-1] );
                dp[3][i-1][j] = max ( dp[3][i-1][j] , dp[3][i][j] + a[i-1][j] );
            }*/
        int ans = 0;
        for ( int i = 2; i < n ; i++ )
            for ( int j = 2; j < m ; j++ )
            {
                ans = max ( ans , dp[0][i-1][j]+dp[3][i+1][j]+dp[1][i][j-1]+dp[2][i][j+1] );
                ans = max ( ans , dp[0][i][j-1]+dp[3][i][j+1]+dp[1][i+1][j]+dp[2][i-1][j] );
            }
        printf ( "%d\n" , ans );
    }
}

你可能感兴趣的:(codeforces的dp专题)