- Spark 组件 GraphX、Streaming
叶域
大数据sparkspark大数据分布式
Spark组件GraphX、Streaming一、SparkGraphX1.1GraphX的主要概念1.2GraphX的核心操作1.3示例代码1.4GraphX的应用场景二、SparkStreaming2.1SparkStreaming的主要概念2.2示例代码2.3SparkStreaming的集成2.4SparkStreaming的应用场景SparkGraphX用于处理图和图并行计算。Graph
- 月度总结 | 2022年03月 | 考研与就业的抉择 | 确定未来走大数据开发路线
「已注销」
个人总结hadoop
一、时间线梳理3月3日,寻找到同专业的就业伙伴3月5日,着手准备Java八股文,决定先走Java后端路线3月8月,申请到了校图书馆的考研专座,决定暂时放弃就业,先准备考研,买了数学和408的资料书3月9日-3月13日,因疫情原因,宿舍区暂封,这段时间在准备考研,发现内容特别多3月13日-3月19日,大部分时间在刷Hadoop、Zookeeper、Kafka的视频,同时在准备实习的项目3月20日,退
- 科锐国际(计算机类),汤臣倍健,中建三局,宁德时代,途游游戏,得物,顺丰,康冠科技24春招内推
weixin_53585422
c++算法pythonjavac语言
科锐国际(计算机类),汤臣倍健,中建三局,宁德时代,途游游戏,得物,顺丰,康冠科技24春招内推①汤臣倍健【内推岗位】:市场类、营销类、研发类、电商类、职能类、IT技术类、商业分析类、生产运营类【内推链接】https://sourl.cn/JSDhLU【推荐码】ES3W2T②科锐国际(OD项目组--计算机专场)【招聘岗位】软件开发工程师、软件测试工程师、大数据开发工程师、运维工程师等计算机类岗位,2
- 比较Spark与Flink
傲雪凌霜,松柏长青
大数据后端sparkflink大数据
ApacheSpark和ApacheFlink都是目前非常流行的大数据处理引擎,但它们在架构、处理模式、应用场景等方面有一些显著的区别。下面是二者的对比:1.处理模式Spark:主要支持批处理(BatchProcessing),也能通过SparkStreaming处理流式数据,但SparkStreaming本质上是通过微批(micro-batching)的方式处理流数据,延迟相对较高。SparkS
- 实时数仓之实时数仓架构(Hudi)(1),2024年最新熬夜整理华为最新大数据开发笔试题
2401_84181221
程序员架构大数据
+Hudi:湖仓一体数据管理框架,用来管理模型数据,包括ODS/DWD/DWS/DIM/ADS等;+Doris:OLAP引擎,同步数仓结果模型,对外提供数据服务支持;+Hbase:用来存储维表信息,维表数据来源一部分有Flink加工实时写入,另一部分是从Spark任务生产,其主要作用用来支持FlinkETL处理过程中的LookupJoin功能。这里选用Hbase原因主要因为Table的HbaseC
- 最新【JAVA问题解决方案】02,字节跳动大数据开发高级工程师
2401_84586779
大数据面试学习
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。需要这份系统化资料的朋友,可以戳这里获取一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!publicvoidexcelTest(){Lists
- pyspark kafka mysql_数据平台实践①——Flume+Kafka+SparkStreaming(pyspark)
weixin_39793638
pysparkkafkamysql
蜻蜓点水Flume——数据采集如果说,爬虫是采集外部数据的常用手段的话,那么,Flume就是采集内部数据的常用手段之一(logstash也是这方面的佼佼者)。下面介绍一下Flume的基本构造。Agent:包含Source、Channel和Sink的主体,它是这3个组件的载体,是组成Flume的数据节点。Event:Flume数据传输的基本单元。Source:用来接收Event,并将Event批量传
- HiveSQL一本通 - 案例实操,2024年最新大数据开发编程基础班
疯狂的石头。
程序员大数据
count(stu_id)stu_countfromscore_infogroupbycourse_idhavingstu_count>=15;(3)查询结果。course_idstu_count0119021903196.3.4查询结果排序和分组指定条件1.查询学生的总成绩并按照总成绩降序排序(1)思路分析。本题主要考查分组聚合和orderby关键字的使用。(2)查询语句。hive>select
- Apache Flink 替换 Spark Stream的架构与实践( bilibili 案例解读)_streamsparkflink加载udf(1)
2401_84165953
程序员flinkspark架构
2.开发架构设计(1)开发架构图:如下图左侧所示。最上层是Saber-Streamer,主要进行作业提交以及API管理。下一层是BSQL层,主要进行SQL的扩展和解析,包括自定义算子和个性算子。再下层是运行时态,下面是引擎层。运行时态主要管理引擎层作业的上下层。bilibili早期使用的引擎是SparkStreaming,后期扩展了Flink,在开发架构中预留了一部分引擎层的扩展。最下层是状态存储
- 大数据秋招面经之spark系列
wq17629260466
大数据spark
文章目录前言spark高频面试题汇总1.spark介绍2.spark分组取TopN方案总结:方案2是最佳方案。3.repartition与coalesce4.spark的oom问题怎么产生的以及解决方案5.storm与flink,sparkstreaming之间的区别6.spark的几种部署方式:7.复习spark的yarn-cluster模式执行流程:8.spark的job提交流程:9.spar
- SparkStreaming业务逻辑处理的一些高级算子
看见我的小熊没
sparkStreamingscalasparkbigdatascala
1、reduceByKey reduceByKey是按key进行计算,操作的数据是每个批次内的数据(一个采集周期),不能跨批次计算。如果需要实现对历史数据的跨批次统计累加,则需要使用updateStateByKey算子或者mapWithState算子。packagecom.sparkscala.streamingimportorg.apache.log4j.{Level,Logger}impor
- Spark一些个人总结
易逑实战数据
大数据sparkbigdatascala
文章目录前言一、Spark是什么二、Spark用来做什么三、Spark的优势是什么四、为什么用Spark五、Spark解决了什么问题总结前言随着大数据技术的发展,一些更加优秀的组件被提了出来,比如现在最常用的Spark组件,基于RDD原理在大数据处理中占据了越来越重要的作用。在此我们探索了Spark的原理,以及其在大数据开发中的重要作用。一、Spark是什么Spark是一个用来实现快速,通用的集群
- Spark与Kafka进行连接
傲雪凌霜,松柏长青
后端大数据sparkkafka
在Java中使用Spark与Kafka进行连接,你可以使用SparkStreaming来处理实时流数据。以下是一个简单的示例,展示了如何使用SparkStreaming从Kafka读取数据并进行处理。1.引入依赖首先,在你的pom.xml文件中添加必要的依赖项(假设你在使用Maven):org.apache.sparkspark-core_2.123.4.0org.apache.sparkspar
- 最全金融数据_PySpark-3(2),大数据开发学习的三个终极问题及学习路线规划
2401_84185145
大数据面试学习
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新需要这份系统化资料的朋友,可以戳这里获取frompyspark.ml.evaluationimportBinaryClassificationEv
- spark streaming优点和缺点
scott_alpha
优点:sparkstreaming会被转化为spark作业执行,由于spark作业依赖DAGScheduler和RDD,所以是粗粒度方式而不是细粒度方式,可以快速处理小批量数据,获得准实时的特性;以spark作业提交和执行,很方便的实现容错机制;DStreaming是在RDD上的抽象,更容易与RDD进行交互操作。需要将流式数据与批数据结合分析的情况下,非常方便。缺点:不可避免的延迟
- kafka消费者重复消费同一个topic
小琳ai
大数据kafka重复消费consumer
我的需求是我有多个消费者,需要重复消费某一个topic。场景是sparkstreaming消费kafka数据在这里sparkstream和kafka都是单节点的集群模式。同时起两个不同的groupid的应用,发现会发生后起来的应用消费不到数据。按理来讲不同的groupid属于不同的消费组,不会相互影响。由于是使用的cdh集成的kafka,不知道cdh里的zookeeper管理kafka的数据存在了
- Java 快速入门 知识精简(1)
Tangy范
Javajava开发语言
语言特点特点一:面向对象俩个基本概念:类,对象三大特性:封装,继承,多态特点二:健壮性去掉了指针,内存的申请与释放提供了相对安全的内存管理和访问机制特点三:跨平台性由JVM负责Java程序在系统中的运行JVMforUNIXJVMforWindowsJVMforMac应用领域:JavaWeb开发后台开发大数据开发Android应用程序开发:客户端开发知识结构编程语言核心结构:主要知识点:变量、基本语
- 大数据开发技术HBase优化与特点分析
at小白在线中
大数据
高可用在HBase中Hmaster负责监控RegionServer的生命周期,均衡RegionServer的负载,如果Hmaster挂掉了,那么整个HBase集群将陷入不健康的状态,并且此时的工作状态并不会维持太久。所以HBase支持对Hmaster的高可用配置。关闭HBase集群(如果没有开启则跳过此步)[atguigu@hadoop102hbase]$bin/stop-hbase.sh在con
- 小白?转型?毕业生?外行学习快速入行大数据开发指南
weixin_45732643
Hadoop大数据开发编程语言大数据大数据开发大数据学习Hadoop编程语言
大数据是对海量数据进行存储、计算、统计、分析处理的一系列处理手段,处理的数据量通常是TB级,甚至是PB或EB级的数据,这是传统数据处理手段所无法完成的,其涉及的技术有分布式计算、高并发处理、高可用处理、集群、实时性计算等,汇集了当前IT领域热门流行的IT技术。大数据是什么?投资者眼里是金光闪闪的两个字:资产。比如,Facebook上市时,评估机构评定的有效资产中大部分都是其社交网站上的数据。如果把
- SparkStreaming结合kafka将offSet保存在redis中
哈哈xxy
bigdatasparkStreamingkafkaoffsetredis
SparkStreaming结合kafka将offSet保存在redis中SparkStreaming结合kafka的两种方式1、SparkStreaming的高级APiCreateDStream,容易发生数据多次读取,官方已经不推荐2、SparkStreaming的低级APicreateDirectStream需要自己保存offset保存方式有两大类,一类是Spark自带的checkpoint(
- Spark Streaming+Kafka整合+offset管理
JiahuiTian
大数据#Spark#Kafkakafkaspark大数据
Kafka0-8Receiver模式和Direct模式都不适合当前版本不适用,本次学习采用Kafka0-10Direct模式,并通过第三方存储zookeeper来手动管理offset目录前言offset管理一个完整的整合代码Demo(Java版)导入相关的Maven依赖创建通过ZK管理Offset的工具类测试类Demo前言SparkStreaming获取Kafka的数据有两种方式:Receiver
- Spark(46) -- SparkStreaming整合kafka数据源
erainm
大数据学习spark
1.回顾Kafka可以看我前面kafka文章核心概念图解Broker:安装Kafka服务的机器就是一个brokerProducer:消息的生产者,负责将数据写入到broker中(push)Consumer:消息的消费者,负责从kafka中拉取数据(pull),老版本的消费者需要依赖zk,新版本的不需要Topic:主题,相当于是数据的一个分类,不同topic存放不同业务的数据--主题:区分业务Rep
- 大数据分析与大数据开发两者的区别是怎样的?
泰迪智能科技01
就业班大数据
大数据主要分为两个就业方向:①大数据开发②大数据分析大数据分析:主要负责现有数据价值提炼与挖掘,包括业务增长点挖掘,产品改进点挖掘,业务分析指标体系构建,业务分析报告出具等大数据开发:主要负责大数据平台与应用开发,包括数据仓库构建,离线计算、实时计算应用开发,大数据应用后端开发,企业数据标准制定等就业岗位薪资(平均月薪如下)大数据的培训目标是什么呢?大数据分析方向:从企业实际数据分析需求出发,满足
- Python大数据学习day01——大数据开发概论
笨小孩124
python学习总结大数据学习python
目录大数据概念大数据特点大数据应用场景大数据分析业务步骤大数据职业规划大数据学习路线1.大数据解决问题海量数据存储——海量数据运算——海量数据迁移2.大数据特点(大、多、值、快、信)数据体量大种类和来源多源化实现低价值密度速度快数据的质量准确可信3.大数据应用4.大数据分析步骤明确分析目的思路——数据收集——数据处理(ETL)——数据分析——数据展现——撰写报告5.大数据职业规划6.大数据学习路线
- SparkStreaming 如何保证消费Kafka的数据不丢失不重复
K. Bob
SparkSpark
目录SparkStreaming接收Kafka数据的方式有两种:Receiver接收数据和采用Direct方式。(1)一个Receiver效率低,需要开启多个线程,手动合并数据再进行处理,并且Receiver方式为确保零数据丢失,需要开启WAL(预写日志)保证数据安全,这将同步保存所有收到的Kafka数据到HDFS,以便在发生故障时可以恢复所有数据。尽管WAL可以保证数据零丢失,但是不能保证exa
- spark采坑集锦之用kafka作为DStream数据源,并行度问题
方兵兵
spark采坑集锦
在SparkStreaming中作为数据源的Kafka怎样接收多主题发送的数据呢?使用StreamingContext.union方法将多个streaming流合并处理defmain(args:Array[String]):Unit={Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)valconf=newSparkConf().s
- 面试笔记8.24
励志秃头码代码
面试职场和发展
项目你的项目中涉及大数据开发,那你的代码工程是怎么搭建的?正确答案:在我的项目中涉及大数据开发时,我通常会采用分布式的架构,比如使用Hadoop或者Spark等大数据处理框架。我会在集群中部署多台服务器,通过分布式计算和存储来处理大规模数据。解答思路:首先,我会搭建一个Hadoop或Spark集群,确保集群中的每台服务器都能正常通信。然后,我会编写MapReduce或Spark作业来处理数据,将数
- 从零到一建设数据中台 - 关键技术汇总
我码玄黄
数据中台数据挖掘数据分析大数据
一、数据中台关键技术汇总语言框架:Java、Maven、SpringBoot数据分布式采集:Flume、Sqoop、kettle数据分布式存储:HadoopHDFS离线批处理计算:MapReduce、Spark、Flink实时流式计算:Storm/SparkStreaming、Flink批处理消息队列:Kafka查询分析:Hbase、Hive、ClickHouse、Presto搜索引擎:Elast
- 大数据开发(Hive面试真题-卷二)
Key-Key
大数据hive面试
大数据开发(Hive面试真题)1、举几个Hive开窗函数例子?什么要有开窗函数,和聚集函数区别?2、说下Hive是什么?跟数据仓库区别?3、Hive架构?4、Hive数据倾斜以及解决方案?5、Hive如果不用参数调优,在map和reduce端应该做什么?6、Hive的三种自定义函数是什么?实现步骤与流程?它们之间的区别?作用是什么?7、Hive分区和分桶的区别?8、Hive的执行流程?9、Hive
- 大数据开发(Kafka面试真题-卷一)
Key-Key
大数据kafka面试
大数据开发(Kafka面试真题)1、请解释以下ApacheKafka是什么?它在大数据系统中的角色是什么?2、请解释以下Kafka的工作原理和它与传统消息队列服务的不同之处?3、解释以下ApacheKafka的作用以及它与常见消息队列系统(如RabbitMQ)之间的区别?4、如何使用ApacheKafka来实现实时数据流处理?5、Flinkcheckpoint和Kafkaoffset的关联是什么?
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那