STM32F407 SPI配置(普中开发板)

声明:文章部分图片引自网络,如若侵权立即删帖致歉

SPI简单介绍

SPI全称是“Serial Peripheral Interface”,意为串行外围接口。主要应用在E²PROM、FLASH、实时时钟、AD转换器,数字信号处理器和数字信号解码器之间。SPI是一种高速的,全双工,同步的通信总线,在芯片管脚上只占四根线。
通常, SPI 通过 4 个引脚与外部器件连接:
● MISO:主输入/从输出数据。此引脚可用于在从模式下发送数据和在主模式下接收数据。
● MOSI:主输出/从输入数据。此引脚可用于在主模式下发送数据和在从模式下接收数据。
● SCK:用于 SPI 主器件的串行时钟输出以及 SPI 从器件的串行时钟输入。
● NSS:从器件选择。这是用于选择从器件的可选引脚。此引脚用作“片选”,可让 SPI主器件与从器件进行单独通信,从而并避免数据线上的竞争。从器件的 NSS 输入可由主器件上的标准 IO 端口驱动。 NSS 引脚在使能( SSOE 位)时还可用作输出,并可在SPI 处于主模式配置时驱动为低电平。通过这种方式,只要器件配置成 NSS 硬件管理模式,所有连接到该主器件 NSS 引脚的其它器件 NSS 引脚都将呈现低电平,并因此而作为从器件。当配置为主模式,且 NSS 配置为输入( MSTR=1 且 SSOE=0)时,如果NSS 拉至低电平, SPI 将进入主模式故障状态: MSTR 位自动清零,并且器件配置为从模式

SPI库函数配置过程

#include "spi.h"

//以下是SPI模块的初始化代码,配置成主机模式 						  
//SPI口初始化
//这里针是对SPI1的初始化
void SPI1_Init(void)
{
	GPIO_InitTypeDef  GPIO_InitStructure;
	SPI_InitTypeDef  SPI_InitStructure;
	
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);//使能GPIOB时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE);//使能SPI1时钟
	
	GPIO_PinAFConfig(GPIOB,GPIO_PinSource3,GPIO_AF_SPI1); //PB3复用为 SPI1
	GPIO_PinAFConfig(GPIOB,GPIO_PinSource4,GPIO_AF_SPI1); //PB4复用为 SPI1
	GPIO_PinAFConfig(GPIOB,GPIO_PinSource5,GPIO_AF_SPI1); //PB5复用为 SPI1
	
	//GPIOFB3,4,5初始化设置
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5;//PB3~5复用功能输出	
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;//复用功能
	GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;//推挽输出
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;//100MHz
	GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;//上拉
	GPIO_Init(GPIOB, &GPIO_InitStructure);//初始化
	
	//这里只针对SPI口初始化
	RCC_APB2PeriphResetCmd(RCC_APB2Periph_SPI1,ENABLE);//复位SPI1
	RCC_APB2PeriphResetCmd(RCC_APB2Periph_SPI1,DISABLE);//停止复位SPI1

	SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;  //设置SPI单向或者双向的数据模式:SPI设置为双线双向全双工
	SPI_InitStructure.SPI_Mode = SPI_Mode_Master;		//设置SPI工作模式:设置为主SPI
	SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;		//设置SPI的数据大小:SPI发送接收8位帧结构
	SPI_InitStructure.SPI_CPOL = SPI_CPOL_High;		//串行同步时钟的空闲状态为高电平
	SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;	//串行同步时钟的第二个跳变沿(上升或下降)数据被采样
	SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;		//NSS信号由硬件(NSS管脚)还是软件(使用SSI位)管理:内部NSS信号有SSI位控制
	SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_256;		//定义波特率预分频的值:波特率预分频值为256
	SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;	//指定数据传输从MSB位还是LSB位开始:数据传输从MSB位开始
	SPI_InitStructure.SPI_CRCPolynomial = 7;	//CRC值计算的多项式
	SPI_Init(SPI1, &SPI_InitStructure);  //根据SPI_InitStruct中指定的参数初始化外设SPIx寄存器
	
	SPI_Cmd(SPI1, ENABLE); //使能SPI外设
	
	SPI1_ReadWriteByte(0xff);//启动传输	
}

//SPI1速度设置函数
//SPI速度=fAPB2/分频系数
//@ref SPI_BaudRate_Prescaler:SPI_BaudRatePrescaler_2~SPI_BaudRatePrescaler_256  
//fAPB2时钟一般为84Mhz:
void SPI1_SetSpeed(u8 SPI_BaudRatePrescaler)
{
	SPI1->CR1&=0XFFC7;//位3-5清零,用来设置波特率
	SPI1->CR1|=SPI_BaudRatePrescaler;	//设置SPI1速度 
	SPI_Cmd(SPI1,ENABLE); //使能SPI1
} 

//SPI1 读写一个字节
//TxData:要写入的字节
//返回值:读取到的字节
u8 SPI1_ReadWriteByte(u8 TxData)
{		 			 
 
	while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET);//等待发送区空  
	
	SPI_I2S_SendData(SPI1, TxData); //通过外设SPIx发送一个byte  数据
		
	while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET); //等待接收完一个byte  
 
	return SPI_I2S_ReceiveData(SPI1); //返回通过SPIx最近接收的数据	
 		    
}


你可能感兴趣的:(STM32,单片机,嵌入式,物联网,stm32)