- YOLOv12优化:图像去噪 | AAAI2025 Transformer |一种基于Transformer的盲点网络(TBSN)架构 ,结合空间和通道自注意力层来增强网络能力
AI小怪兽
YOLOv12魔术师YOLOtransformer深度学习人工智能python
提出了一种基于Transformer的盲点网络(TBSN)架构,通过分析和重新设计Transformer运算符以满足盲点要求。TBSN遵循扩张BSN的架构原则,并结合空间和通道自注意力层来增强网络能力。如何使用:1)结合C3k2二次创新使用;2)结合A2C2f二次创新使用;亮点包括:1.提出了一种新的基于Transformer的盲点网络(TBSN)架构;2.引入了知识蒸馏策略来提高计算效率;3.在
- 知识蒸馏:从软标签压缩到推理能力迁移的工程实践(基于教师-学生模型的高效压缩技术与DeepSeek合成数据创新)
AI仙人掌
人工智能AI人工智能深度学习语言模型机器学习
知识蒸馏通过迁移教师模型(复杂)的知识到学生模型(轻量),实现模型压缩与性能平衡。核心在于利用教师模型的软标签(概率分布)替代独热编码标签,学生模型不仅学习到教师模型输出数据的类别信息,还能够捕捉到类别之间的相似性和关系,从而提升其泛化能力核心概念知识蒸馏的核心目标是实现从教师模型到学生模型的知识迁移。在实际应用中,无论是大规模语言模型(LLMs)还是其他类型的神经网络模型,都会通过softmax
- 知识蒸馏 vs RLHF:目标函数与收敛分析
从零开始学习人工智能
人工智能
1.知识蒸馏(KnowledgeDistillation)知识蒸馏是一种模型压缩技术,旨在将大型复杂模型(教师模型)的知识迁移到较小的模型(学生模型)中,以提高学生模型的性能。目标函数知识蒸馏的目标函数通常由两部分组成:分类损失(StudentLoss):学生模型的输出与真实标签之间的交叉熵损失,表示为:[Lclassification=CrossEntropy(y,q(1))=−∑i=1Nyil
- 从剪枝到知识蒸馏:深度学习模型压缩与加速的多重策略
一键难忘
剪枝深度学习算法知识蒸馏
本文收录于专栏:精通AI实战千例专栏合集https://blog.csdn.net/weixin_52908342/category_11863492.html从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。每一个案例都附带关键代码,详细讲解供大家学习,希望可以帮到大家。正在不断更新中文章目录从剪枝到知识蒸馏:深度学习模型压缩与加速的多重策略1.
- TPAMI 2024 | 学习人类教育智慧:以学生为中心的知识蒸馏方法
小白学视觉
论文解读IEEETPAMI知识蒸馏TPAMI论文解读深度学习
题目:LearningFromHumanEducationalWisdom:AStudent-CenteredKnowledgeDistillationMethod学习人类教育智慧:以学生为中心的知识蒸馏方法作者:S.Yang;J.Yang;M.Zhou;Z.Huang;W.-S.Zheng;X.Yang;J.Ren摘要现有的知识蒸馏研究通常侧重于以教师为中心的方法,其中教师网络根据自身标准进行训
- 必看!一文读懂知识蒸馏技术
小天才学习机打游戏
人工智能知识图谱神经网络langchainwindows
导读最近,DeepSeek的爆火让大家对人工智能领域的技术发展又有了新的关注。而知识蒸馏作为深度学习中一项重要的技术,也在背后默默地发挥着作用,今天就来给大家详细介绍一下知识蒸馏及其相关原理。1.知识蒸馏是什么在深度学习领域,大型模型(如DeepSeek)通常具有强大的性能,但它们的计算量和参数量都非常庞大,这使得它们难以在资源受限的设备(如移动设备或嵌入式设备)上部署。例如,GPT-3在570G
- 嵌入式AI必备技能2-模型的压缩与加速
奥德彪123
嵌入式AI人工智能嵌入式
嵌入式AI必备技能2-模型的压缩与加速引言随着嵌入式AI设备的广泛应用,模型的计算效率和存储需求成为核心挑战。由于嵌入式系统通常资源受限,传统的深度学习模型往往难以直接部署。因此,模型压缩和加速技术应运而生,旨在减少计算量、降低存储需求,同时尽可能保持模型的准确性。本文介绍几种常见的模型压缩与加速方法,包括剪枝、低秩分解、量化、权值共享、知识蒸馏等,并探讨如何综合应用这些技术来优化AI模型。1.常
- 大模型高效优化技术全景解析:微调、量化、剪枝、梯度裁剪与蒸馏
时光旅人01号
人工智能剪枝算法深度学习数据挖掘人工智能
目录微调(Fine-tuning)量化(Quantization)剪枝(Pruning)梯度裁剪(GradientClipping)知识蒸馏(KnowledgeDistillation)技术对比与协同策略总结与趋势1.微调(Fine-tuning)核心思想在预训练模型(如BERT、GPT)基础上,通过领域数据调整参数,适配下游任务。方法流程预训练模型加载:加载通用模型权重(如HuggingFace
- 知识蒸馏中的温度参数 T(Temperature)的作用
彬彬侠
大模型Temperature温度参数知识蒸馏Distillationpytorchpython
知识蒸馏中的温度参数TTT(Temperature)的作用1.什么是温度参数TTT?在知识蒸馏(KnowledgeDistillation,KD)过程中,教师模型的输出通常是一个概率分布(通过softmax计算得到)。温度参数TTT控制softmax的平滑程度,使得学生模型可以更好地学习教师模型的知识。在标准的softmax函数中,类别iii的概率计算如下:Pi=ezi∑jezjP_i=\frac
- PyTorch深度学习框架60天进阶学习计划 - 第18天:模型压缩技术
凡人的AI工具箱
深度学习pytorch学习python人工智能
PyTorch深度学习框架60天进阶学习计划-第18天:模型压缩技术目录模型压缩技术概述知识蒸馏详解软标签生成策略KL散度损失推导温度参数调节结构化剪枝技术通道剪枝评估准则L1-norm剪枝算法APoZ剪枝算法量化训练基础量化类型与精度PyTorch量化API剪枝与量化协同优化Torch.fx动态计算图修改自动化模型压缩流程实现实战案例:ResNet模型压缩性能评估与分析进阶挑战与思考1.模型压缩
- 知识蒸馏论文精选——《Graph-Free Knowledge Distillation for Graph Neural Networks 》
宇直不会放弃
GKD-Outputlayer人工智能数据挖掘机器学习深度学习神经网络cnnpytorch
(GFKD)无图知识蒸馏《Graph-FreeKnowledgeDistillationforGraphNeuralNetworks》2021作者是XiangDeng和ZhongfeiZhang,来自纽约州立大学宾汉姆顿分校论文地址见文末摘要知识蒸馏(KnowledgeDistillation,KD)通过强制学生网络模仿在训练数据上预训练老师网络的输出,从而将知识从老师网络转移到学生网络。然而,在
- LWC-KD:图结构感知的推荐系统增量学习对比知识蒸馏
宇直不会放弃
GKD-Middlelayer人工智能pythonchatgptgpu算力深度学习机器学习神经网络
LWC-KD:图结构感知的推荐系统增量学习对比知识蒸馏《GraphStructureAwareContrastiveKnowledgeDistillationforIncrementalLearninginRecommenderSystems》2021作者是YueningWang、YingxueZhang和MarkCoates论文地址:https://dl.acm.org/doi/10.1145/
- 【大模型】DeepSeek-R1-Distill-Qwen部署及API调用
油泼辣子多加
大模型实战算法gptlangchain人工智能
DeepSeek-R1-Distill-Qwen是由中国人工智能公司深度求索(DeepSeek)开发的轻量化大语言模型,基于阿里巴巴的Qwen系列模型通过知识蒸馏技术优化而来。当前模型开源后,我们可以将其部署,使用API方式进行本地调用1.部署环境本文中的部署基础环境如下所示:PyTorch2.5.1Python3.12(ubuntu22.04)Cuda12.4GPURTX3090(24GB)*1
- 《探秘课程蒸馏体系“三阶训练法”:解锁知识层级递进式迁移的密码》
人工智能深度学习
在人工智能与教育科技深度融合的时代,如何高效地实现知识传递与能力提升,成为众多学者、教育工作者以及技术专家共同探索的课题。课程蒸馏体系中的“三阶训练法”,作为一种创新的知识迁移模式,正逐渐崭露头角,为解决这一难题提供了全新的思路。从概念上讲,课程蒸馏体系借鉴了机器学习中知识蒸馏的思想,将复杂、庞大的知识体系进行提炼和压缩,使其能够更有效地被学习者吸收。而“三阶训练法”作为该体系的核心,通过精心设计
- AI语言模型的技术之争:DeepSeek与ChatGPT的架构与训练揭秘
m0_74825466
面试学习路线阿里巴巴chatgpt人工智能语言模型
-CSDN博客目录第一章:DeepSeek与ChatGPT的基础概述1.1DeepSeek简介1.2ChatGPT简介第二章:模型架构对比2.1Transformer架构:核心相似性2.2模型规模与参数第三章:训练方法与技术3.1预训练与微调:基础训练方法3.2强化学习与奖励建模3.3知识蒸馏与量化技术第四章:训练数据与应用4.1训练数据集:数据源的差异4.2特定领域任务:应用场景的差异第五章:代
- 智能模型轻量化:知识蒸馏技术如何重塑AI部署格局
人工智能
智能模型轻量化:知识蒸馏技术如何重塑AI部署格局前言在人工智能技术高速迭代的今天,模型优化领域正经历着静默的革命。当我们惊叹于DeepSeek在自然语言处理上的惊艳表现时,一个关键问题逐渐浮出水面:如何让这些"庞然大物"真正走入现实场景?知识蒸馏技术作为模型压缩领域的突破性方案,正在为AI技术的普惠化开辟新路径。一、技术本质的解构与重构知识蒸馏颠覆了传统模型训练的范式,构建了"师生传承"的新型学习
- DeepSeek到TinyLSTM的知识蒸馏
猴的哥儿
笔记python机器学习深度学习神经网络AI编程
一、架构设计与适配模型结构对比:DeepSeek(教师模型):基于Transformer,多头自注意力机制,层数≥12,隐藏层维度≥768TinyLSTM(学生模型):单层双向LSTM,隐藏单元128,全连接输出层表示空间对齐:classAdapter(nn.Module):def__init__(self,in_dim=768,out_dim=128):super().__init__()sel
- DynamicSparse-MobileNet (DSMNet) 用于低功耗图像分类
闲人编程
人工智能实战教程—论文创新点分类人工智能数据挖掘DSMNet动态稀疏熵感知自适应
目录DynamicSparse-MobileNet(DSMNet)用于低功耗图像分类一、模型背景与动机二、模型创新点详细解析1.动态稀疏计算路径2.自适应通道缩放3.熵感知知识蒸馏三、数据集与预处理四、网络结构详解1.输入层与熵估计模块2.动态稀疏卷积块3.熵感知分类头五、模型优化策略1.优化器设计——Prodigy优化器2.动态计算损失3.损失函数设计4.正则化技术5.防止过拟合六、网络结构图与
- 【大模型】什么是蒸馏版大模型
深度求索者
python人工智能开发语言
大模型蒸馏一、知识蒸馏与无监督样本训练1.知识蒸馏的核心原理目标:将复杂大模型(Teacher)的知识迁移到轻量化小模型(Student)中,提升小模型性能。流程:训练Teacher模型:在完整数据集上训练高性能大模型。冻结Teacher模型:固定其参数,作为监督信号源。训练Student模型:通过模仿Teacher的输出(如logits、特征图等)优化Student模型。2.蒸馏方法分类方法描述
- [特殊字符]【CVPR2024新突破】Logit标准化:知识蒸馏中的自适应温度革命[特殊字符]
☞黑心萝卜三条杠☜
论文人工智能论文阅读
文章信息题目:LogitStandardizationinKnowledgeDistillation论文地址:paper代码地址:code年份:2024年发表于CVPR文章主题文章的核心目标是改进知识蒸馏(KD)中的一个关键问题:传统KD方法假设教师和学生模型共享一个全局温度参数(temperature),这导致学生模型需要精确匹配教师模型的logit范围和方差。这种假设不仅限制了学生模型的性能,
- 生成一个完全真实情况下的翌师公会运行机制报告和翌师+ai业务模式的综合价值评估报告
太翌修仙笔录
人工智能
翌师公会项目全景报告——基于行业基准分析与战略定位研究一、项目本体架构1.组织基因解码核心DNA:markdown知识蒸馏力(35%)+技术融合力(28%)+生态构建力(22%)+合规生存力(15%)进化图谱:mermaidtimeline2023Q4:原型验证2024Q2:MVP发布2025Q1:区域扩展2026Q3:生态闭环2.能力雷达图pythonimportmatplotlib.pyplo
- DeepSeek-V3:最强开源MoE模型的技术解析与使用指南
认识祂
deepseek开源deepseek
目录引言模型概览架构创新:负载均衡策略与训练目标预训练:追求极致的训练效率后训练:从DeepSeek-R1进行知识蒸馏模型下载评估结果基础模型标准基准测试上下文窗口聊天模型标准基准测试(大于67B的模型)开放式生成评估如何使用在线聊天与API平台本地运行指南模型权重转换推理示例使用DeepSeek-InferDemo使用SGLang使用LMDeploy许可证引用联系我们1.引言我们隆重推出Deep
- AI岗位面试指南:高频文档问题解析与应答策略
阿三0812
ai人工智能面试
一、必问文档类问题与应答模板1.简历深挖类典型问题:"请详细解释简历中提到的「基于Transformer的文本生成优化项目」,你如何量化性能提升?"应答框架:背景与目标:"项目源于客户需要将文本生成延迟从2秒压缩至800ms以内,同时保证BLEU分数不低于0.82"技术创新点:"采用知识蒸馏+动态量化方案,设计分层注意力裁剪策略"量化成果:"推理速度提升2.7倍(2150ms→780ms),内存占
- 大模型知识蒸馏:技术突破与应用范式重构——从DeepSeek创新看AI基础设施演进路径
大模型服务器厂商
重构人工智能
一、知识蒸馏的技术哲学演进知识蒸馏(KnowledgeDistillation)作为模型压缩领域的核心技术突破,其发展轨迹折射出人工智能从"规模崇拜"向"效率优先"的范式转变。传统知识蒸馏框架主要关注概率分布层面的知识迁移,但DeepSeek等前沿项目展示出更复杂的知识萃取机制。最新研究表明,知识传递已从单纯的输出层模仿,发展到注意力模式迁移(AttentionTransfer)、隐层特征对齐(H
- DeepSeek技术解析:降本增效的“双刃剑”如何重塑AI产业?
爱吃青菜的大力水手
人工智能
DeepSeek技术解析:降本增效的“双刃剑”如何重塑AI产业?正面影响分析算力需求与成本大幅降低DeepSeek通过算法优化(如稀疏计算、知识蒸馏)和模型压缩技术,将云端训练算力需求降至传统大模型的35%,车端推理芯片需求减少至65%。例如,某车企使用高通8650平台后,智驾系统成本显著下降。这种优化使得中小企业能以更低成本部署AI,甚至支持本地化私有化部署(如金融行业案例),同时减少对英伟达高
- 商业角度看教师模型与学生模型的关系-ChatGPT4o作答
部分分式
人工智能chatgpt
从商业的角度来看,知识蒸馏中教师模型(TeacherModel)和学生模型(StudentModel)之间的关系,实际上类似于一种“传帮带”的过程,即一个庞大且复杂的模型将其知识传递给一个更小、更高效的模型。这个过程不仅对模型的技术优化至关重要,还与商业运作的多个层面密切相关,特别是成本控制、效率提升、市场竞争力、和可扩展性等方面。教师模型与学生模型的关系:商业运作中的表现成本效益与资源优化教师模
- 整理:4篇论文知识蒸馏引领高效模型新时代
mslion
多模态人工智能知识蒸馏
知识蒸馏(KnowledgeDistillation)是当前机器学习研究中的一个重要方向,特别是在模型压缩和效率优化等任务中。传统的深度学习模型往往依赖于复杂的大型网络,以获取卓越的性能。然而,这些庞大的模型对计算资源和存储空间的需求,使得它们在实际应用中,尤其是在边缘设备或移动端部署中面临巨大挑战。知识蒸馏技术致力于解决这一问题,其核心思想是通过一个“教师模型”向一个更小、更高效的“学生模型”传
- 大模型量化概述
AI领航者
人工智能ai大模型
近年来,随着Transformer、MOE架构的提出,使得深度学习模型轻松突破上万亿规模参数,从而导致模型变得越来越大,因此,我们需要一些大模型压缩技术来降低模型部署的成本,并提升模型的推理性能。模型压缩主要分为如下几类:剪枝(Pruning)知识蒸馏(KnowledgeDistillation)量化Quantization)本系列将针对一些常见大模型量化方案(GPTQ、LLM.int8()、Sm
- 模型压缩-模型蒸馏、模型剪枝、模型量化
NLP的小Y
剪枝机器学习nlp语言模型
一、模型蒸馏1.1蒸馏简介知识蒸馏是指通过教师模型指导学生模型训练,通过蒸馏的方式让学生模型学习到教师模型的知识,最终使学生模型达到或媲美教师模型的准确度。在模型压缩中,教师模型是一个预训练好的复杂的模型,而学生模型是一个规模较小的模型。如分类任务中,由训练好的教师模型在相同的数据下,通过将教师模型对样本的预测值作为学生模型的预测目标,指导学生模型学习,这个预测值一般指教师网络输出的类概率。教师模
- 【CVPR 2021】Knowledge Review:知识蒸馏新解法
BIT可达鸭
深度学习人工智能计算机视觉模型压缩知识蒸馏
【CVPR2021】KnowledgeReview:知识蒸馏新解法论文地址:主要问题:主要思路:符号假设:具体实现:实验结果:关注我的公众号:联系作者:论文地址:https://jiaya.me/papers/kdreview_cvpr21.pdf主要问题:目前大部分关于KD的方法都是基于相同层或者相同Block之间的知识迁移。但是Teacher往往深层表示抽象的语义信息,底层表示简单的知识的信息
- C/C++Win32编程基础详解视频下载
择善Zach
编程C++Win32
课题视频:C/C++Win32编程基础详解
视频知识:win32窗口的创建
windows事件机制
主讲:择善Uncle老师
学习交流群:386620625
验证码:625
--
- Guava Cache使用笔记
bylijinnan
javaguavacache
1.Guava Cache的get/getIfPresent方法当参数为null时会抛空指针异常
我刚开始使用时还以为Guava Cache跟HashMap一样,get(null)返回null。
实际上Guava整体设计思想就是拒绝null的,很多地方都会执行com.google.common.base.Preconditions.checkNotNull的检查。
2.Guava
- 解决ora-01652无法通过128(在temp表空间中)
0624chenhong
oracle
解决ora-01652无法通过128(在temp表空间中)扩展temp段的过程
一个sql语句后,大约花了10分钟,好不容易有一个结果,但是报了一个ora-01652错误,查阅了oracle的错误代码说明:意思是指temp表空间无法自动扩展temp段。这种问题一般有两种原因:一是临时表空间空间太小,二是不能自动扩展。
分析过程:
既然是temp表空间有问题,那当
- Struct在jsp标签
不懂事的小屁孩
struct
非UI标签介绍:
控制类标签:
1:程序流程控制标签 if elseif else
<s:if test="isUsed">
<span class="label label-success">True</span>
</
- 按对象属性排序
换个号韩国红果果
JavaScript对象排序
利用JavaScript进行对象排序,根据用户的年龄排序展示
<script>
var bob={
name;bob,
age:30
}
var peter={
name;peter,
age:30
}
var amy={
name;amy,
age:24
}
var mike={
name;mike,
age:29
}
var john={
- 大数据分析让个性化的客户体验不再遥远
蓝儿唯美
数据分析
顾客通过多种渠道制造大量数据,企业则热衷于利用这些信息来实现更为个性化的体验。
分析公司Gartner表示,高级分析会成为客户服务的关键,但是大数据分析的采用目前仅局限于不到一成的企业。 挑战在于企业还在努力适应结构化数据,疲于根据自身的客户关系管理(CRM)系统部署有效的分析框架,以及集成不同的内外部信息源。
然而,面对顾客通过数字技术参与而产生的快速变化的信息,企业需要及时作出反应。要想实
- java笔记4
a-john
java
操作符
1,使用java操作符
操作符接受一个或多个参数,并生成一个新值。参数的形式与普通的方法调用不用,但是效果是相同的。加号和一元的正号(+)、减号和一元的负号(-)、乘号(*)、除号(/)以及赋值号(=)的用法与其他编程语言类似。
操作符作用于操作数,生成一个新值。另外,有些操作符可能会改变操作数自身的
- 从裸机编程到嵌入式Linux编程思想的转变------分而治之:驱动和应用程序
aijuans
嵌入式学习
笔者学习嵌入式Linux也有一段时间了,很奇怪的是很多书讲驱动编程方面的知识,也有很多书将ARM9方面的知识,但是从以前51形式的(对寄存器直接操作,初始化芯片的功能模块)编程方法,和思维模式,变换为基于Linux操作系统编程,讲这个思想转变的书几乎没有,让初学者走了很多弯路,撞了很多难墙。
笔者因此写上自己的学习心得,希望能给和我一样转变
- 在springmvc中解决FastJson循环引用的问题
asialee
循环引用fastjson
我们先来看一个例子:
package com.elong.bms;
import java.io.OutputStream;
import java.util.HashMap;
import java.util.Map;
import co
- ArrayAdapter和SimpleAdapter技术总结
百合不是茶
androidSimpleAdapterArrayAdapter高级组件基础
ArrayAdapter比较简单,但它只能用于显示文字。而SimpleAdapter则有很强的扩展性,可以自定义出各种效果
ArrayAdapter;的数据可以是数组或者是队列
// 获得下拉框对象
AutoCompleteTextView textview = (AutoCompleteTextView) this
- 九封信
bijian1013
人生励志
有时候,莫名的心情不好,不想和任何人说话,只想一个人静静的发呆。有时候,想一个人躲起来脆弱,不愿别人看到自己的伤口。有时候,走过熟悉的街角,看到熟悉的背影,突然想起一个人的脸。有时候,发现自己一夜之间就长大了。 2014,写给人
- Linux下安装MySQL Web 管理工具phpMyAdmin
sunjing
PHPInstallphpMyAdmin
PHP http://php.net/
phpMyAdmin http://www.phpmyadmin.net
Error compiling PHP on CentOS x64
一、安装Apache
请参阅http://billben.iteye.com/admin/blogs/1985244
二、安装依赖包
sudo yum install gd
- 分布式系统理论
bit1129
分布式
FLP
One famous theory in distributed computing, known as FLP after the authors Fischer, Lynch, and Patterson, proved that in a distributed system with asynchronous communication and process crashes,
- ssh2整合(spring+struts2+hibernate)-附源码
白糖_
eclipsespringHibernatemysql项目管理
最近抽空又整理了一套ssh2框架,主要使用的技术如下:
spring做容器,管理了三层(dao,service,actioin)的对象
struts2实现与页面交互(MVC),自己做了一个异常拦截器,能拦截Action层抛出的异常
hibernate与数据库交互
BoneCp数据库连接池,据说比其它数据库连接池快20倍,仅仅是据说
MySql数据库
项目用eclipse
- treetable bug记录
braveCS
table
// 插入子节点删除再插入时不能正常显示。修改:
//不知改后有没有错,先做个备忘
Tree.prototype.removeNode = function(node) {
// Recursively remove all descendants of +node+
this.unloadBranch(node);
// Remove
- 编程之美-电话号码对应英语单词
bylijinnan
java算法编程之美
import java.util.Arrays;
public class NumberToWord {
/**
* 编程之美 电话号码对应英语单词
* 题目:
* 手机上的拨号盘,每个数字都对应一些字母,比如2对应ABC,3对应DEF.........,8对应TUV,9对应WXYZ,
* 要求对一段数字,输出其代表的所有可能的字母组合
- jquery ajax读书笔记
chengxuyuancsdn
jQuery ajax
1、jsp页面
<%@ page language="java" import="java.util.*" pageEncoding="GBK"%>
<%
String path = request.getContextPath();
String basePath = request.getScheme()
- JWFD工作流拓扑结构解析伪码描述算法
comsci
数据结构算法工作活动J#
对工作流拓扑结构解析感兴趣的朋友可以下载附件,或者下载JWFD的全部代码进行分析
/* 流程图拓扑结构解析伪码描述算法
public java.util.ArrayList DFS(String graphid, String stepid, int j)
- oracle I/O 从属进程
daizj
oracle
I/O 从属进程
I/O从属进程用于为不支持异步I/O的系统或设备模拟异步I/O.例如,磁带设备(相当慢)就不支持异步I/O.通过使用I/O 从属进程,可以让磁带机模仿通常只为磁盘驱动器提供的功能。就好像支持真正的异步I/O 一样,写设备的进程(调用者)会收集大量数据,并交由写入器写出。数据成功地写出时,写入器(此时写入器是I/O 从属进程,而不是操作系统)会通知原来的调用者,调用者则会
- 高级排序:希尔排序
dieslrae
希尔排序
public void shellSort(int[] array){
int limit = 1;
int temp;
int index;
while(limit <= array.length/3){
limit = limit * 3 + 1;
- 初二下学期难记忆单词
dcj3sjt126com
englishword
kitchen 厨房
cupboard 厨柜
salt 盐
sugar 糖
oil 油
fork 叉;餐叉
spoon 匙;调羹
chopsticks 筷子
cabbage 卷心菜;洋白菜
soup 汤
Italian 意大利的
Indian 印度的
workplace 工作场所
even 甚至;更
Italy 意大利
laugh 笑
m
- Go语言使用MySQL数据库进行增删改查
dcj3sjt126com
mysql
目前Internet上流行的网站构架方式是LAMP,其中的M即MySQL, 作为数据库,MySQL以免费、开源、使用方便为优势成为了很多Web开发的后端数据库存储引擎。MySQL驱动Go中支持MySQL的驱动目前比较多,有如下几种,有些是支持database/sql标准,而有些是采用了自己的实现接口,常用的有如下几种:
http://code.google.c...o-mysql-dri
- git命令
shuizhaosi888
git
---------------设置全局用户名:
git config --global user.name "HanShuliang" //设置用户名
git config --global user.email "
[email protected]" //设置邮箱
---------------查看环境配置
git config --li
- qemu-kvm 网络 nat模式 (四)
haoningabc
kvmqemu
qemu-ifup-NAT
#!/bin/bash
BRIDGE=virbr0
NETWORK=192.168.122.0
GATEWAY=192.168.122.1
NETMASK=255.255.255.0
DHCPRANGE=192.168.122.2,192.168.122.254
TFTPROOT=
BOOTP=
function check_bridge()
- 不要让未来的你,讨厌现在的自己
jingjing0907
生活 奋斗 工作 梦想
故事one
23岁,他大学毕业,放弃了父母安排的稳定工作,独闯京城,在家小公司混个小职位,工作还算顺手,月薪三千,混了混,混走了一年的光阴。 24岁,有了女朋友,从二环12人的集体宿舍搬到香山民居,一间平房,二人世界,爱爱爱。偶然约三朋四友,打扑克搓麻将,日子快乐似神仙; 25岁,出了几次差,调了两次岗,薪水涨了不过百,生猛狂飙的物价让现实血淋淋,无力为心爱银儿购件大牌
- 枚举类型详解
一路欢笑一路走
enum枚举详解enumsetenumMap
枚举类型详解
一.Enum详解
1.1枚举类型的介绍
JDK1.5加入了一个全新的类型的”类”—枚举类型,为此JDK1.5引入了一个新的关键字enum,我们可以这样定义一个枚举类型。
Demo:一个最简单的枚举类
public enum ColorType {
RED
- 第11章 动画效果(上)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Eclipse中jsp、js文件编辑时,卡死现象解决汇总
ljf_home
eclipsejsp卡死js卡死
使用Eclipse编辑jsp、js文件时,经常出现卡死现象,在网上百度了N次,经过N次优化调整后,卡死现象逐步好转,具体那个方法起到作用,不太好讲。将所有用过的方法罗列如下:
1、取消验证
windows–>perferences–>validation
把 除了manual 下面的全部点掉,build下只留 classpath dependency Valida
- MySQL编程中的6个重要的实用技巧
tomcat_oracle
mysql
每一行命令都是用分号(;)作为结束
对于MySQL,第一件你必须牢记的是它的每一行命令都是用分号(;)作为结束的,但当一行MySQL被插入在PHP代码中时,最好把后面的分号省略掉,例如:
mysql_query("INSERT INTO tablename(first_name,last_name)VALUES('$first_name',$last_name')");
- zoj 3820 Building Fire Stations(二分+bfs)
阿尔萨斯
Build
题目链接:zoj 3820 Building Fire Stations
题目大意:给定一棵树,选取两个建立加油站,问说所有点距离加油站距离的最大值的最小值是多少,并且任意输出一种建立加油站的方式。
解题思路:二分距离判断,判断函数的复杂度是o(n),这样的复杂度应该是o(nlogn),即使常数系数偏大,但是居然跑了4.5s,也是醉了。 判断函数里面做了3次bfs,但是每次bfs节点最多