[SinGuLaRiTy] 复习模板-图论

【SinGuLaRiTy-1041】 Copyright (c) SinGuLaRiTy 2017. All Rights Reserved.

计算树的直径

//方法:任选一个点作为起点进行一次BFS,找到最远点u。再以u为起点做一次BFS,找最长路即直径。
queue<int>point;
void bfs(int a,int dis[])
{
    memset(dis,inf,sizeof dis);
    dis[a]=0;
    point.push(a);
    int v ,u ;
    while(!point.empty())
    {
        u=point.front();
        point.pop();
        for(node *p=adj[u];p!=NULL;p=p->next)
            if(dis[(v=p->v)]>dis[u]+p->w)
            {
                dis[v]=dis[u]+p->w;
                point.push(v);
            }
    }
}

void solve()//输出直径长度
{
    bfs(1,dis);
    int flag=1;
    for(int i=2;i<=n;++i)
        if(dis[flag]<dis[i])
            flag=i;
    bfs(flag,dis2);
    int flag2=1;
    for(int i=2;i<=n;++i)
        if(dis2[flag2]<dis2[i])
            flag2=i;
    printf("%d",dis2[flag2]);
}

LCA-返回a,b两点间的最短边权

返回a,b两点之间的最短边权
void dfs(int u)
{
    int v ;
    for(node *p=adj[u];p!=NULL;p=p->next)
    {
        v=p->v;
        f[v][0]=u ;
        dep[v]=dep[u]+1 ;
        dfs(v);
    }
}

void init()
{
    dep[root]=0 ;
    dfs(root);
    f[root][0]=root ;
    for(int j=1;jj)
        for(int i=1;i<=n;++i)
            f[i][j]=f[f[i][j-1]][j-1];
}

void adjust(int &u,int val)
{
    for(int j=MAXK-1;j>=0;--j)
        if(dep[f[u][j]]>=val)
            u=f[u][j];
}

int solve(int u,int v)
{
    if(dep[u]>dep[v])adjust(u,dep[v]);
    else if(dep[u]<dep[v])adjust(v,dep[u]);
    if(u==v)return u;
    for(int j=MAXK-1;j>=0;--j)
        if(f[u][j]!=f[v][j])
            u=f[u][j] ,v=f[v][j];
    return f[u][0];
}

LCA 最近公共祖先-在线倍增

#include
#include
#include
#include
#include
#include
using namespace std;

const int N=100001,L=20;
int m,first[N],next[N],d[N],f[N][L];
inline void dfs(int x,int dep)
{
  d[x]=dep;
  m=max(m,dep);
  for (int i=first[x];i;i=next[i]) dfs(i,dep+1);
}
int log2(int x)
{
  int k=0;
  while (x>1)
    {
      x>>=1;
      k++;
    }
  return k;
}
int main()
{
  int i,j,n,s,x,y,root;
  scanf("%d",&n);
  for (i=1;i<=n;i++)
    {
      scanf("%d",&f[i][0]);
      if (!f[i][0]) root=i;
      next[i]=first[f[i][0]];
      first[f[i][0]]=i;
    }
  dfs(root,0);
  s=log2(m);
  for (j=1;j<=s;j++)
    for (i=1;i<=n;i++) f[i][j]=f[f[i][j-1]][j-1];
  scanf("%d",&n);
  while (n--)
    {
      scanf("%d%d",&x,&y);
      if (d[x]<d[y]) swap(x,y);
      s=log2(d[x]-d[y]);
      while (d[x]>d[y])
    {
      if (d[x]-(1<=d[y]) x=f[x][s];
      s--;
    }
      s=log2(d[x]);
      while (s>-1)
    {
      if (f[x][s]!=f[y][s])
        {
          x=f[x][s];
          y=f[y][s];
        }
      s--;
    }
      printf("%d\n",x==y?x:f[x][0]);
    }
  return 0;
}

LCA 最近公共祖先-树链(双链树存图)

#include
#include
#include
#include
#include
#include
#define N 100001
using namespace std;

int a[N*2],d[N],down[N],next[N],top,f[2*N][18],loc[2*N][18],n,b[N];
int log2(int x)
{
    int k=0;
    while (x>1)
    {
        x/=2;
        k++;
    }
    return k;
}
void dfs(int x,int dep)
{
    int i;
    d[x]=dep;
    a[++top]=x;
    for (i=down[x];i!=0;i=next[i])
    {
        dfs(i,dep+1);
        a[++top]=x;
    }
}
void init()
{
    int i,j,s,x,k;
    for (i=1;i<=top;i++)
    {
        f[i][0]=d[a[i]];
        loc[i][0]=a[i];
    }
    s=log2(top);
    for (j=1;j<=s;j++)
    {
        k=top-(1<1;
        for (i=1;i<=k;i++)
        {
            x=i+(1<<(j-1));
            if (f[i][j-1]<=f[x][j-1])
            {
                f[i][j]=f[i][j-1];
                loc[i][j]=loc[i][j-1];
            }
            else
            {
                f[i][j]=f[x][j-1];
                loc[i][j]=loc[x][j-1];
            }
        }
    }
}
int main()
{
    int i,k,x,y,t;
    scanf("%d",&n);
    for (i=1;i<=n;i++) down[i]=d[i]=next[i]=0;
    for (i=1;i<=n;i++)
    {
        scanf("%d",&x);
        next[i]=down[x];
        down[x]=i;
    }
    top=0;
    dfs(down[0],1);
    for (i=1;i<=top;i++) if (b[a[i]]==0) b[a[i]]=i;
    init();
    scanf("%d",&t);
    while (t>0)
    {
        t--;
        scanf("%d%d",&x,&y);
        x=b[x];
        y=b[y];
        if (x>y) swap(x,y);
        i=log2(y-x);
        k=y-(1<1;
        printf("%d\n",f[x][i]loc[x][i]:loc[k][i]);
    }
    return 0;
}

LCA 最近公共祖先-tarjan算法

void tarjan(int u)
{
    for(node *p=adj[u];p!=NULL;p=p->next)
    {
        tarjan(p->v);
        Union(p->v,u);
    }
    vis[u]=1;
    
    for(int i=1;i<=ask[u][0];++i)
        if(vis[ask[u][i]]==1)
            printf("%d\n",getroot(ask[u][i]));
}

void init()
{
    scanf("%d",&m);
    while(m--)
    {
        scanf("%d%d",&a,&b);
        ask[a][++ask[a][0]]=b;
        ask[b][++ask[b][0]]=a;
    }
    for(int i=1;i<=n;++i)
        if(!in[i])
        {
            tarjan(i);
            break;
        }
}

前向星存图

struct node
{
    int v ,w ;
    node *next ;
}edge[MAXM<<1] ,*adj[MAXN] ,*code=edge ;

void add(int a,int b,int c)
{
    ++code; code->v=b ,code->w=c ,code->next=adj[a] ; adj[a]=code ; }

最短路-Dijkstra

#define inf 0x3f3f3f3f
int dis[MAXN+5] ;
bool flag[MAXN+5] ;
void dijkstra(int a)
{
    memset(dis,inf,sizeof dis);
    dis[a]=0;
    int minv ; for(int i=1;i<=n;++i) { minv=0 ; for(int i=1;i<=n;++i) if(!flag[i]&&dis[minv]>dis[i]) minv=i; if(minv==0)break; flag[minv]=1; for(node *p=adj[minv];p!=NULL;p=p->next) dis[p->v]=min(dis[p->v],dis[minv]+p->w); } }

最短路-优先队列(堆优化的Dijkstra)

struct node
{
    int v ,w ;
    node *next ;
    bool operator < (const node &a) const
    {
        return w>a.w;
    }
}edge[MAXM<<1] ,*adj[MAXN] ,*code=edge ; priority_queue > q;//注意必须开结构体,因为若在队列中一个元素的dis发生改变,队列不会对它重新排序 void dijkstra(int a) { memset(vis,0,sizeof vis); memset(dis,inf,sizeof dis); dis[a]=0 ; q.push((node){a,0}); int u ,d ,v ; while(!q.empty()) { u=q.top().v ,d=q.top().w ; q.pop(); if(vis[u])continue; vis[u]=1; for(node *p=adj[u];p!=NULL;p=p->next) if(!vis[(v=p->v)]&&dis[v]>dis[u]+p->w) { dis[v]=dis[u]+p->w; q.push((node){v,dis[v]}); } } }

最短路-SPFA+判断负权环路

#define inf 0x3f3f3f3f
queuepoint;
int dis[MAXN+5] ,vis[MAXN+5] ;
bool in[MAXN+5] ;
void spfa(int a)
{
    int u ,v ; memset(dis,inf,sizeof dis); point.push(a); dis[a]=0 ,in[a]=vis[a]=1 ; while(!point.empty()) { u=point.front(); in[u]=0 ; point.pop(); for(node *p=adj[u];p!=NULL;p=p->next) if(dis[(v=p->v)]>dis[u]+p->w) { dis[v]=dis[u]+p->w; if(!in[v]) { in[v]=1; point.push(v); if(++vis[v]>n) { puts("No Solution"); return; } } } } }

最短路-Floyd

int dis[MAXN+5][MAXN+5] ;
void floyd()
{
    for(int k=1;k<=n;++k)
        for(int i=1;i<=n;++i)
            if(k!=i)
                for(int j=1;j<=n;++j) if(i!=j&&k!=j) dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]); }

一笔画问题-欧拉回路

#include 
#include 
#define MAXN 105
using namespace std;

int n ,m ,a ,b ,map[MAXN+5][MAXN+5] ,temp[MAXN<<1] ,du[MAXN] ,cnt ;
int flag[5] ,pos ;

void dfs(int u)
{
    for(int v=1;v<=n;++v) if(map[u][v]) { map[u][v]=map[v][u]=0; dfs(v); } temp[++cnt]=u ; } int main() { scanf("%d",&n); for(int i=1;i<=n;++i) for(int j=1;j<=n;++j) { scanf("%d",&map[i][j]); if(map[i][j])++du[i]; } for(int i=1;i<=n;++i) if(du[i]&1) flag[++pos]=i ; if(pos!=0&&pos!=2) { puts("No Solution!"); return 0; } if(pos==0)flag[1]=flag[2]=1; dfs(flag[1]); for(int i=cnt;i>1;--i) printf("%d ",temp[i]); printf("%d\n",temp[1]); return 0; }

多叉树(森林)转二叉树

//输入N,M表示节点数和边数,再输入M组边关系,从1到N输出每个结点的父亲,根节点父亲为0 
#include 
#include  
using namespace std;  
void read(int &x)  
{  
    int f=1;x=0;char s=getchar();  
    while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}  
    while(s>='0'&&s<='9'){x=x*10+s-'0';s=getchar();}  
    x*=f;  
}  
#define MAXN 100  
struct node  
{  
    int l,r,f;  
}tree[MAXN+5];  
int N,M;  
int root[MAXN+5],rs;  
bool d[MAXN+5][MAXN+5];  
void rtb()//处理森林
{  
    for(int i=1;i<=N;i++)  
        if(!tree[i].f)  
            root[++rs]=i;  
    for(int i=rs;i>1;i--)  
    {  
        tree[root[i-1]].r=root[i];  
        tree[root[i]].f=root[i-1];  
    }  
}  
int main()  
{  
    read(N),read(M);  
    for(int i=1;i<=M;i++)  
    {  
        int x,y;  
        read(x),read(y);  
        d[x][y]=1;//先保存起来
    }  
    for(int i=1;i<=N;i++)//再处理
        for(int j=1;j<=N;j++)  
            if(d[i][j])  
            {  
                if(tree[i].l==0)  
                {  
                    tree[i].l=j;  
                    tree[j].f=i;  
                }  
                else  
                {
                    int t=tree[i].l;
                    while(tree[t].r) t=tree[t].r;
                    tree[t].r=j;
                    tree[j].f=t;
                }
            }
    rtb();
    for(int i=1;i<=N;i++)  
    {  
        if(i"%d\n",tree[i].f);  
        else printf("%d",tree[i].f);  
    }  
}

树的先序,中序,后序遍历-非递归版

//先序遍历
void PreOrder(Node* root) {
  assert(NULL != root)
  stack store;
  store.push(root); // 根结点入栈 
  while(!store.empty()) { 
    root = store.top(); // 在循环中,root记录的是当前准备输出的结点
    store.pop();
    cout << root->value << "  "; // 输出当前结点 
    if(root->right_child) // 右孩子入栈 
      store.push(root->right_child);
    if(root->left_child) // 左孩子入栈 
      store.push(root->left_child); 
  }
}

//中序遍历
void InOrder(Node* root) {
  assert(NULL != root);
  stack store;
  while(root && !store.empty()) {
    if(root != NULL) { // 只要不为空,就一路向左结点方向走去 
      store.push(root);
      root = root->left_child;
    }
    else { // store.top()的左边都走过了 
      cout << store.top()->value << "  "; // 输出当前结点 
      root = store.top()->right_child;
      store.pop();
    }
  }
}

//后序遍历
void PostOrder(Node* root) {
  assert(NULL != root);
  Node* Pre = NULL;
  stack store;
  while(root && !store.empty()) {
    if(root != NULL) { // 一路向左 
      store.push(root);
      root = root->left_child;
    }
    else { // stack.top()的左子树都输出完了 
      if(store.top()->right_child!=NULL && store.top()->right_child!=Pre) { 
      // 右子树存在且没有输出过 
        root = root->right_child; 
      } 
      else { // 左右子树都输出过了 
        cout << store.top()->value << "  ";
        Pre = store.top();
        store.pop(); 
      } 
    }
  }
}

树的先序,中序,后序遍历-递归版

//先序遍历
void preOrder1(BinTree *root)
{
    if(root!=NULL)
    {
        cout<data<<" ";
        preOrder1(root->lchild);
        preOrder1(root->rchild);
    }
}

//中序遍历
void inOrder1(BinTree *root)
{
    if(root!=NULL)
    {
        inOrder1(root->lchild);
        cout<data<<" ";
        inOrder1(root->rchild);
    }
}

//后序遍历
void postOrder1(BinTree *root)
{
    if(root!=NULL)
    {
        postOrder1(root->lchild);
        postOrder1(root->rchild);
        cout<data<<" ";
    }    
}

求树的重心

//以 POJ 1655 为例
//题意:给定一棵树,求树的重心的编号以及重心删除后得到的最大子树的节点个数size,如果size相同就选取编号最小的.
#include
#include
#include

using namespace std;
const int N = 20005;
const int INF = 1<<30;

int head[N];
int son[N];
bool vis[N];
int cnt,n;
int ans,size;

struct Edge
{
    int to;
    int next;
};

Edge edge[2*N];

void Init()
{
    cnt = 0;
    size = INF;
    memset(vis,0,sizeof(vis));
    memset(head,-1,sizeof(head));
}

void add(int u,int v)
{
    edge[cnt].to = v;
    edge[cnt].next = head[u];
    head[u] = cnt++;
}

void dfs(int cur)
{
    vis[cur] = 1;
    son[cur] = 0;
    int tmp = 0;
    for(int i=head[cur];~i;i=edge[i].next)
    {
        int u = edge[i].to;
        if(!vis[u])
        {
            dfs(u);
            son[cur] += son[u] + 1;
            tmp = max(tmp,son[u] + 1);
        }
    }
    tmp = max(tmp,n-son[cur]-1);
    if(tmp < size || tmp == size && cur < ans)
    {
        ans = cur;
        size = tmp;
    }
}

int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        Init();
        scanf("%d",&n);
        for(int i=1;i<=n-1;i++)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            add(u,v);
            add(v,u);
        }
        dfs(1);
        printf("%d %d\n",ans,size);
    }
    return 0;
}

最小生成树-Kruskal

#include
#include
#include
#include
using namespace std;
const int MAXN = 1010, MAXM = 100010;
int N, M;

struct Edge {
    int a, b, d;
    bool operator < (const Edge&t) const {
        return d < t.d;
    }
} ed[MAXM];

int tfa[MAXN];
void init() {
    for (int i = 1; i<=N; ++i)
        tfa[i] = i;
}
int root(int x) {
    if (x == tfa[x]) return x;
    return tfa[x] = root(tfa[x]);
}
void unite(int x, int y) {
    tfa[root(x)] = root(y);
}

int Kruskal()
{
    sort(ed+1, ed+M+1);
    int i, cnt = 0, a, b, ans = 0;
    for (i = 1; i<=M && cnt 
   

最小生成树-Prim

#include
#include
#include
#include
using namespace std;
const int MAXN = 5010, MAXM = 500010;
const int INF = 0x3f3f3f3f;
int N, M;

struct Node {
    int to, d;
    Node *next;
}Edge[MAXM*2], *ecnt=Edge, *adj[MAXN];
void addedge(int a, int b, int c)
{
    (++ecnt)->to = b;
    ecnt->d = c;
    ecnt->next = adj[a];
    adj[a] = ecnt;
}

bool vis[MAXN];
struct Near {
    int to, d;
    Near(){}
    Near(int a,int b){to=a;d=b;}
    bool operator < (const Near&t) const {
        return d > t.d;
    }
};
int prim()
{
    int cnt = 0, ans = 0;
    priority_queue Q;
    Q.push(Near(1, 0));
    while (cnt < N && !Q.empty())
    {
        int u = Q.top().to, d = Q.top().d;
        Q.pop();
        if (vis[u]) continue;
        ans += d;
        vis[u] = 1;
        ++cnt;
        for (Node*p = adj[u]; p; p=p->next)
            if (!vis[p->to])
                Q.push(Near(p->to, p->d));
    }
    return ans;
}

int main()
{
    
    return 0;
}

拓扑排序-Toposort

int ans[MAXN+5] ;
bool vis[MAXN+5] ;
void topo()
{
    int flag ;
    for(int i=1;i<=n;++i)
    {
        flag=0; for(int j=1;j<=n;++j) if(!vis[j]&&!in[j]) {flag=j;break;} if(!flag) { puts("no solution"); return; } ans[i]=flag ,vis[flag]=1 ; for(node *p=adj[flag];p!=NULL;p=p->next) --in[p->v]; } for(int i=1;ii) printf("%d ",ans[i]); printf("%d\n",ans[n]); }

求割点

int low[MAXN] ,dfn[MAXN] ,cnt ,root_son ;
bool cutp[MAXN] ;
void dfs(int u,int fa)
{
    int v ;
    low[u]=dfn[u]=++cnt ;
    for(node *p=adj[u];p!=NULL;p=p->next) { v=p->v; if(!dfn[v]) { dfs(v,u); low[u]=min(low[u],low[v]); if(low[v]>=dfn[u])//在这里注意打上{}  { if(fa!=-1)cutp[u]=1 ; else ++root_son; } } else if(v!=fa) low[u]=min(low[u],dfn[v]); } } void tarjon() { memset(dfn,0,sizeof dfn); memset(low,0,sizeof low); cnt=0; for(int i=1;i<=n;++i) if(!dfn[i]) { root_son=0 ; dfs(i,-1); cutp[i]=root_son-1 ; } }

求割边(即桥)

int low[MAXN] ,dfn[MAXN] ,cnt ,root_son ;
int cnte[MAXM][2] ,pos ;
void dfs(int u,int fa)
{
    int v ;
    low[u]=dfn[u]=++cnt ;
    for(node *p=adj[u];p!=NULL;p=p->next) { v=p->v; if(!dfn[v]) { dfs(v,u); low[u]=min(low[u],low[v]); if(low[v]>dfn[u]) cnte[++pos][0]=u ,cnte[pos][1]=v ; } else if(v!=fa) low[u]=min(low[u],dfn[v]); } } void tarjon() { memset(dfn,0,sizeof dfn); memset(low,0,sizeof low); cnt=0; for(int i=1;i<=n;++i) if(!dfn[i]) dfs(i,-1); }

双联通分量

stack< pair >e;
pairtmp ;
int dfn[MAXN] ,low[MAXN] ,cnt ,pos ;
void dfs(int u,int fa)
{
    low[u]=dfn[u]=++cnt ;
    int v ; for(node *p=adj[u];p!=NULL;p=p->next) { v=p->v; if(!dfn[v]) { e.push(make_pair(u,v)); dfs(v,u); low[u]=min(low[u],low[v]); if(low[v]>=dfn[u]) { printf("Block No. %d\n",++pos); do { tmp=e.top(); e.pop(); printf("%d, %d\n",tmp.first,tmp.second); }while(tmp.first!=u||tmp.second!=v); } } else if(v!=fa) { low[u]=min(low[u],dfn[v]); if(dfn[u]>low[v]) e.push(make_pair(u,v)); } } } void tarjon() { memset(dfn,0,sizeof dfn); memset(low,0,sizeof low); cnt=0; for(int i=1;i<=n;++i) if(!dfn[i]) dfs(i,-1); }

有向图强连通分量

int cnt ,pos ,low[MAXN+5] ,dfn[MAXN+5] ,block[MAXN+5] ;
void dfs(int u)
{
    int v ;
    low[u]=dfn[u]=++cnt;
    in[u]=1 ;
    stack[++tail]=u; for(node *p=adj[u];p!=NULL;p=p->next) { v=p->v; if(!dfn[v]) { dfs(v); low[u]=min(low[u],low[v]); } else if(in[v]) low[u]=min(low[u],dfn[v]); } if(low[u]==dfn[u]) { ++pos; do { block[stack[tail]]=pos; in[stack[tail]]=0;//忘记删除标记- - --tail; }while(stack[tail+1]!=u); } } void tarjon() { memset(dfn,0,sizeof dfn); memset(low,0,sizeof low); cnt=pos=0; for(int i=1;i<=n;++i) if(!dfn[i]) dfs(i); }

二分图判定-DFS

//以 HDU 2444 为例
//题意:给出一个无向图,若为二分图则求最大匹配,否则输出"No"。
#include
#include
#include

using namespace std;
const int N = 2005;

int head[N],link[N];
bool vis[N],col[N];
int cnt,n,m;

struct Edge
{
    int to;
    int next;
};

Edge edge[N*N];

void Init()
{
    cnt = 0;
    memset(head,-1,sizeof(head));
    memset(col,0,sizeof(col));
}

void add(int u,int v)
{
    edge[cnt].to = v;
    edge[cnt].next = head[u];
    head[u] = cnt++;
}

bool Color(int u)
{
    for(int i=head[u]; ~i; i=edge[i].next)
    {
        int v = edge[i].to;
        if(!col[v])
        {
            col[v] = !col[u];
            if(!Color(v)) return false;
        }
        else if(col[v] == col[u])
            return false;
    }
    return true;
}

bool dfs(int u)
{
    for(int i=head[u]; ~i; i=edge[i].next)
    {
        int v = edge[i].to;
        if(!vis[v])
        {
            vis[v] = 1;
            if(link[v] == -1 || dfs(link[v]))
            {
                link[v] = u;
                return true;
            }
        }
    }
    return false;
}

int match()
{
    int ans = 0;
    memset(link,-1,sizeof(link));
    for(int i=1; i<=n; i++)
    {
        memset(vis,0,sizeof(vis));
        if(dfs(i)) ans++;
    }
    return ans;
}

int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        if(n == 1)
        {
            puts("No");
            continue;
        }
        Init();
        while(m--)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            add(u,v);
            add(v,u);
        }
        col[1] = 1;
        if(!Color(1))
        {
            puts("No");
            continue;
        }
        printf("%d\n",match()>>1);
    }
    return 0;
}

二分图最大匹配-匈牙利算法

bool dfs(int u)
{
    for(int v=1;v<=cntx;++v)
        if(!vis[v]&&map[u][v])
        {
            vis[v]=1;
            if(!cy[v]||dis(cy[v]))
            {
                cx[u]=v ,cy[v]=u ; return 1; } } return 0; } int match() { memset(cx,0,sizeof cx); memset(cy,0,sizeof cy); int ans=0; for(int i=1;i<=cntx;++i) if(!cx[i]) { memset(vis,0,sizeof vis); ans+=dfs(i); } return ans; }

二分图最佳匹配-KM算法

const int inf=1e9,maxn=510;
int KM(int m,int n,int tu[][maxn],int *match1,int *match2)
{
    int s[maxn],t[maxn],l1[maxn],l2[maxn],p,q,ret=0,i,j,k;
    ///l1为左边的匹配分量,l2是右边的匹配分量
    for(i=0; i)
    {
        for(l1[i]=-inf,j=0; j)
            l1[i]=tu[i][j]>l1[i]?tu[i][j]:l1[i];
        if(l1[i]==-inf)
            return -1;
    }
    for(i=0; i0);
    memset(match1,-1,sizeof(int)*n);
    memset(match2,-1,sizeof(int)*n);
    for(i=0; i)
    {
        memset(t,-1,sizeof(int)*n);
        for(s[p=q=0]=i; p<=q&&match1[i]<0; p++)
        {
            for(k=s[p],j=0; j0; j++)
                if(l1[k]+l2[j]==tu[k][j]&&t[j]<0)
                {
                    s[++q]=match2[j],t[j]=k;
                    if(s[q]<0)
                        for(p=j; p>=0; j=p)
                            match2[j]=k=t[j],p=match1[k],match1[k]=j;
                }
        }
        if(match1[i]<0)
        {
            for(i--,p=inf,k=0; k<=q; k++)
                for(j=0; j)
                    if(t[j]<0&&l1[s[k]]+l2[j]-tu[s[k]][j]<p)
                        p=l1[s[k]]+l2[j]-tu[s[k]][j];
            for(j=0; j0?0:p,j++);
            for(k=0; k<=q; l1[s[k++]]-=p);
        }
    }
    for(i=0; i)
        ret+=tu[i][match1[i]];
    return ret;
}

网络流-SAP

//以HDU 3549为例
#include
#include
#include
using namespace std;

typedef  struct {int v,next,val;} edge;
const int MAXN=20010;
const int MAXM=500010;
 
edge e[MAXM];
int p[MAXN],eid;
 
inline void init(){memset(p,-1,sizeof(p));eid=0;}
 
//有向
inline void insert1(int from,int to,int val)
{
    e[eid].v=to;
    e[eid].val=val;
    e[eid].next=p[from];
    p[from]=eid++;
 
    swap(from,to);
 
    e[eid].v=to;
    e[eid].val=0;
    e[eid].next=p[from];
    p[from]=eid++;
}
 
//无向
inline void insert2(int from,int to,int val)
{
    e[eid].v=to;
    e[eid].val=val;
    e[eid].next=p[from];
    p[from]=eid++;
 
    swap(from,to);
 
    e[eid].v=to;
    e[eid].val=val;
    e[eid].next=p[from];
    p[from]=eid++;
}
 
int n,m;//n为点数 m为边数
int h[MAXN];
int gap[MAXN];
 
int source,sink;
inline int dfs(int pos,int cost)
{
    if (pos==sink)
    {
        return cost;
    }
 
    int j,minh=n-1,lv=cost,d;
 
    for (j=p[pos];j!=-1;j=e[j].next)
    {
        int v=e[j].v,val=e[j].val;
        if(val>0)
        {
            if (h[v]+1==h[pos])
            {
                if (lvlv;
                else d=e[j].val;
 
                d=dfs(v,d);
                e[j].val-=d;
                e[j^1].val+=d;
                lv-=d;
                if (h[source]>=n) return cost-lv;
                if (lv==0) break;
            }
 
            if (h[v]h[v];
        }
    }
 
    if (lv==cost)
    {
        --gap[h[pos]];
        if (gap[h[pos]]==0) h[source]=n;
        h[pos]=minh+1;
        ++gap[h[pos]];
    }
 
    return cost-lv;
 
}
 
int sap(int st,int ed)
{
 
    source=st;
    sink=ed;
    int ret=0;
    memset(gap,0,sizeof(gap));
    memset(h,0,sizeof(h));
 
    gap[st]=n;
 
    while (h[st]<n)
    {
        ret+=dfs(st,INT_MAX);
    }
 
    return ret;
}


int main()
{
    int t,add=1;
    scanf("%d",&t);
    while(t--)
    {
        printf("Case %d: ",add++);

        scanf("%d%d",&n,&m);
        init();
        int i;

        int ll,rr,cap;
        for(i=0;i)
        {
            scanf("%d%d%d",&ll,&rr,&cap);
            insert1(ll,rr,cap);
        }
        printf("%d\n",sap(1,n));
    }
    return 0;
}

最大流-ISAP

#include
#include
#include
using namespace std;
#define Min(a,b) ((a)<(b)?(a):(b))
#define clear(a) memset(a,0,sizeof a)
const int MAXN = 1010, MAXM = 10010;
const int INF = 1<<29;

struct Node { int to, c; Node*next, *back; }; struct FlowNet { int S, T, vn; int d[MAXN], vd[MAXN]; Node Edge[MAXM], *ecnt, *adj[MAXN]; FlowNet() { ecnt=Edge; } void init(int a, int b, int c) { S = a; T = b; vn = c; } void addedge(int a, int b, int c) { (++ecnt)->to = b; ecnt->c = c; ecnt->next = adj[a]; adj[a] = ecnt; ecnt->back = ecnt+1; (++ecnt)->to = a; ecnt->c = 0; ecnt->next = adj[b]; adj[b] = ecnt; ecnt->back = ecnt-1; } int aug(int u, int augco) { if (u == T) return augco; int augc = augco, mind = vn-1, delta; for (Node*p = adj[u]; p; p=p->next) if (p->c > 0) { if (d[u] == d[p->to]+1) { delta = aug(p->to, Min(p->c, augc)); augc -= delta; p->c -= delta; p->back->c += delta; if (d[S]>=vn) return augco-augc; if (!augc) break; } mind = Min(mind, d[p->to]); } if (augc == augco) { if (!--vd[d[u]]) d[S] = vn; ++vd[d[u] = mind+1]; } return augco - augc; } int ISAP() { int flow = 0; clear(d); clear(vd); vd[0] = vn; while (d[S] < vn) flow+=aug(1, INF); return flow; } } G; int N, M; int main() { int a, b, c; scanf("%d%d", &M, &N); G.init(1, N, N); for (int i = 1; i<=M; ++i) { scanf("%d%d%d", &a, &b, &c); G.addedge(a, b, c); } printf("%d\n", G.ISAP()); return 0; }

第K短路-K-th_Short

#include
#include
#include
using namespace std;
#define MAXM 100005
#define MAXN 1005
const int INF = 1<<28;
int N, M, S, T, K;

struct Node { int to, len; Node *next; }Edge[MAXM*4], *ecnt = Edge, *adj[MAXN], *radj[MAXN]; void addedge(int a, int b, int c) { ++ecnt; ecnt->to = b; ecnt->len = c; ecnt->next = adj[a]; adj[a] = ecnt; ++ecnt; ecnt->to = a; ecnt->len = c; ecnt->next = radj[b]; radj[b] = ecnt; } struct dijs { int u, dis; dijs () {} dijs (int a,int b) {u=a; dis=b;} bool operator < (const dijs&a) const { return dis > a.dis; } }; int rdis[MAXN]; bool vis[MAXN]; priority_queue dij; void rDijkstra() //边反向跑最短路以获取H函数值 { memset(rdis, 0x3f, sizeof rdis); rdis[T] = 0; dij.push(dijs(T, 0)); dijs t; while (!dij.empty()) { t = dij.top(); dij.pop(); if (vis[t.u]) continue; vis[t.u] = 1; for (Node *p = radj[t.u]; p; p=p->next) if (rdis[p->to] > t.dis + p->len) { rdis[p->to] = t.dis + p->len; dij.push(dijs(p->to, rdis[p->to])); } } } struct ss { int u, pre; ss () {} ss (int a, int b) { u=a; pre=b; } bool operator < (const ss&a) const { return pre+rdis[u] > a.pre+rdis[a.u]; //pre是G函数值,rdis是H函数值,根据两个之和判定优先级。  } }; int Tvisn; //第几次到达T点 priority_queue as; int Astar() { if (S==T) Tvisn = -1; //如果起点终点相等,一开始不算到达终点 as.push(ss(S, 0)); ss t; while (!as.empty()) { t = as.top(); as.pop(); if (t.u == T) { ++Tvisn; if (Tvisn == K) return t.pre; //根据A*算法的正确性,第K次到达即为第K短路  } for (Node *p = adj[t.u]; p; p=p->next) as.push(ss(p->to, t.pre + p->len)); } return -1; } int main() { int i, a, b, c; scanf("%d%d", &N, &M); for (i = 1; i<=M; ++i) { scanf("%d%d%d", &a, &b, &c); addedge(a, b, c); } scanf("%d%d%d", &S, &T, &K); rDijkstra(); printf("%d\n", Astar()); return 0; }

 

Time: 2017-10-16

转载于:https://www.cnblogs.com/SinGuLaRiTy2001/p/7674849.html

你可能感兴趣的:([SinGuLaRiTy] 复习模板-图论)