function factorial(n) {
if (n === 1) return 1;
return n * factorial(n - 1);
}
factorial(5) // 120
上面代码是一个阶乘函数,计算n
的阶乘,最多需要保存n
个调用记录,复杂度 O(n) 。
如果改写成尾递归,只保留一个调用记录,复杂度 O(1) 。
函数调用自身,称为递归。如果尾调用自身,就称为尾递归。
递归非常耗费内存,因为需要同时保存成千上百个调用帧,很容易发生“栈溢出”错误(stack overflow)。但对于尾递归来说,由于只存在一个调用帧,所以永远不会发生“栈溢出”错误
function factorial(n, total) {
if (n === 1) return total;
return factorial(n - 1, n * total);
}
factorial(5, 1) // 120
还有一个比较著名的例子,就是计算 Fibonacci 数列,也能充分说明尾递归优化的重要性。
非尾递归的 Fibonacci 数列实现如下。
function Fibonacci (n) {
if ( n <= 1 ) {return 1};
return Fibonacci(n - 1) + Fibonacci(n - 2);
}
Fibonacci(10) // 89
Fibonacci(100) // 堆栈溢出
Fibonacci(500) // 堆栈溢出
尾递归优化过的 Fibonacci 数列实现如下。
function Fibonacci2 (n , ac1 = 1 , ac2 = 1) {
if( n <= 1 ) {return ac2};
return Fibonacci2 (n - 1, ac2, ac1 + ac2);
}
Fibonacci2(100) // 573147844013817200000
Fibonacci2(1000) // 7.0330367711422765e+208
Fibonacci2(10000) // Infinity
由此可见,“尾调用优化”对递归操作意义重大,所以一些函数式编程语言将其写入了语言规格。ES6 是如此,第一次明确规定,所有 ECMAScript 的实现,都必须部署“尾调用优化”。这就是说,ES6 中只要使用尾递归,就不会发生栈溢出,相对节省内存。
递归函数的改写
function factorial(n, total = 1) {
if (n === 1) return total;
return factorial(n - 1, n * total);
}
factorial(5) // 120
尾递归优化只在严格模式下生效,那么正常模式下,或者那些不支持该功能的环境中,有没有办法也使用尾递归优化呢?回答是可以的,就是自己实现尾递归优化。
它的原理非常简单。尾递归之所以需要优化,原因是调用栈太多,造成溢出,那么只要减少调用栈,就不会溢出。怎么做可以减少调用栈呢?就是采用“循环”换掉“递归”。
下面是一个正常的递归函数。
function sum(x, y) {
if (y > 0) {
return sum(x + 1, y - 1);
} else {
return x;
}
}
sum(1, 100000)
// Uncaught RangeError: Maximum call stack size exceeded(…)
上面代码中,sum
是一个递归函数,参数x
是需要累加的值,参数y
控制递归次数。一旦指定sum
递归 100000 次,就会报错,提示超出调用栈的最大次数。
蹦床函数(trampoline)可以将递归执行转为循环执行。
function trampoline(f) {
while (f && f instanceof Function) {
f = f();
}
return f;
}
上面就是蹦床函数的一个实现,它接受一个函数f
作为参数。只要f
执行后返回一个函数,就继续执行。注意,这里是返回一个函数,然后执行该函数,而不是函数里面调用函数,这样就避免了递归执行,从而就消除了调用栈过大的问题。
然后,要做的就是将原来的递归函数,改写为每一步返回另一个函数。
function sum(x, y) {
if (y > 0) {
return sum.bind(null, x + 1, y - 1);
} else {
return x;
}
}
上面代码中,sum
函数的每次执行,都会返回自身的另一个版本。
现在,使用蹦床函数执行sum
,就不会发生调用栈溢出。
trampoline(sum(1, 100000))
// 100001
蹦床函数并不是真正的尾递归优化,下面的实现才是。
function tco(f) {
var value;
var active = false;
var accumulated = [];
return function accumulator() {
accumulated.push(arguments);
if (!active) {
active = true;
while (accumulated.length) {
value = f.apply(this, accumulated.shift());
}
active = false;
return value;
}
};
}
var sum = tco(function(x, y) {
if (y > 0) {
return sum(x + 1, y - 1)
}
else {
return x
}
});
sum(1, 100000)
// 100001
上面代码中,tco
函数是尾递归优化的实现,它的奥妙就在于状态变量active
。默认情况下,这个变量是不激活的。一旦进入尾递归优化的过程,这个变量就激活了。然后,每一轮递归sum
返回的都是undefined
,所以就避免了递归执行;而accumulated
数组存放每一轮sum
执行的参数,总是有值的,这就保证了accumulator
函数内部的while
循环总是会执行。这样就很巧妙地将“递归”改成了“循环”,而后一轮的参数会取代前一轮的参数,保证了调用栈只有一层。