穷竭检索之宽度遍历

宽度遍历

宽度优先搜索(BFS,Breadth-First Search)也是搜索的手段之一。它与深度优先搜索类似,从某个状态除法探索所有可以到达的状态。

与深度优先搜索的不同之处在于搜索的顺序,宽度优先搜索总是先搜索距离初始状态近的状态。也就是说,它是按照开始状态->只需1次转移就可以到达的所有状态->只需2次转移就可以到达的所有状态->……这样的顺序进行搜索。对于同一个状态,宽度优先搜索只经过一次,因此复杂度为O(状态数x转移的方式)。

 

题一、迷宫的最短路径问题
给定一个大小为NxM的迷宫。迷宫由通道和墙壁组成,每一步可以向邻接的上下左右四格的通道移动。请求出从起点到终点所需的最小步数。请注意,本题假定从起点一定可以移动到终点。

限制条件:N,M <= 100

样例输入:

N=10, M=10(迷宫如下图所示。 '#', '.', 'S', 'G'分别表示墙壁、通道、起点和终点)

#S######.#
......#..#
.#.##.##.#
.#........
##.##.####
....#....#
.#######.#
....#.....
.####.###.
....#...G#

样例输出:22

/*
10 10
# S # # # # # # . #
. . . . . . # . . #
. # . # # . # # . #
. # . . . . . . . .
# # . # # . # # # #
. . . . # . . . . #
. # # # # # # # . #
. . . . # . . . . .
. # # # # . # # # .
. . . . # . . . G #
*/
#include 
#include
 
using namespace std;
 
const int INF=100000;
int n,m,sx,sy,ex,ey;//sx,sy是起点坐标,ex,ey是终点坐标 
int dx[4]={-1,0,1,0},dy[4]={0,-1,0,1};//表示左右位移的大小 
int step[105][105];//点到各个位置的最小路途的数组 
char maze[105][105];//表示迷宫的大小 
typedef pair P;//点的状态符 
 
void solve();
int bfs();
 
int main()
{
    while(cin>>n>>m){
        for(int i=0;i>maze[i][j];
                if(maze[i][j]=='S'){
                    sx=i;sy=j;
                }
                if(maze[i][j]=='G'){
                    ex=i;ey=j;
                }
                step[i][j]=INF;//把所有的位置初始化成INF 
            }
        }
        solve();
    }
    return 0;
}
void solve(){
    int ans=bfs();
    cout< q;
    q.push(P(sx,sy));//输入起点 
    step[sx][sy]=0;//表示最短距离的数组 
    while(q.size()){
        P p=q.front();//p等于队首元素,是一个二维数组 
        if(p.first==ex&&p.second==ey) break;//如果取出的状态是终点,则结束搜索 
        q.pop();//弹出 
        for(int i=0;i<4;i++){//前后左右循环一遍 
            int tx=p.first+dx[i],ty=p.second+dy[i];
            //判断是否可以移动且是否访问过(step[tx][ty] != INF即已经访问过) 
            if(tx>=0&&tx=0&&ty

 

 

你可能感兴趣的:(算法学习)