Java面试08——JVM知识点汇总

1.JVM内存结构

Java面试08——JVM知识点汇总_第1张图片

程序计数器

概述:较小的内存空间,为当前线程执行的字节码的行号指示器
作用:通过改变计数器的值来指定下一条需要执行的字节码指令,来恢复中断前程序运行的位置
特点:

  • 线程私有化,每个线程都有独立的程序计数器。
  • 唯一一个在Java虚拟机中无内存溢出的区域。

Java虚拟机栈

概述:虚拟机栈描述的是Java方法执行的内存模型。每个方法从调用直到执行的过程,对应着一个栈帧在虚拟机栈的入栈和出栈的过程
作用:每个方法执行都创建一个“栈帧”来存储局部变量表、操作数栈、动态链接、方法出口等信息。其中局部变量表存放了编译器可知的各种基本类型(boolean byte char short int float long double)、对象引用(reference类型,他不等同于对象本身,可能是一个指向对象起始地址的引用指针,也可能是指向一个代表对象的句柄或其他与此对象相关的位置)和returnAddress类型(指向了一条字节吗指令的地址)。

特点:

  • 线程私有化
  • 生命周期与线程执行结束相同
    Java面试08——JVM知识点汇总_第2张图片
    可以通过 -Xss 这个虚拟机参数来指定每个线程的 Java 虚拟机栈内存大小:
    java -Xss512M HackTheJava

该区域可能抛出以下异常:
当线程请求的栈深度超过最大值,会抛出 StackOverflowError 异常
栈进行动态扩展时如果无法申请到足够内存,会抛出 OutOfMemoryError 异常

本地方法栈

本地方法栈与 Java 虚拟机栈类似,它们之间的区别是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则为虚拟机使用到的Native方法服务。

本地方法一般是用其它语言(C、C++ 或汇编语言等)编写的,并且被编译为基于本机硬件和操作系统的程序,对待这些方法需要特别处理。
与虚拟机栈一样,本地方法栈也会抛出StackOverflowError和OutOfMemoryError异常。
Java面试08——JVM知识点汇总_第3张图片

Java堆是Java虚拟机所管理的内存中最大的一块。他被所有线程共享的一块区域,在虚拟机启动时创建。此内存区域的唯一目的时存放对象实例,几乎所有的对象实例都在这里分配内存
因而,堆是垃圾收集的主要区域(“GC 堆”)。

现代的垃圾收集器基本都是采用分代收集算法,其主要的思想是针对不同类型的对象采取不同的垃圾回收算法。可以将堆分成两块:

  • 新生代(Young Generation)
  • 老年代(Old Generation)

堆不需要连续内存,并且可以动态增加其内存,增加失败会抛出 OutOfMemoryError 异常。

可以通过 -Xms 和 -Xmx 这两个虚拟机参数来指定一个程序的堆内存大小,第一个参数设置初始值,第二个参数设置最大值。
java -Xms1M -Xmx2M HackTheJava

创建时间:JVM启动时创建该区域
占用空间:Java虚拟机管理内存最大的一块区域

作用:用于存放对象实例及数组(所有new的对象)

特点:

  • 垃圾收集器作用该区域,回收不使用的对象的内存空间
  • 各个线程共享的内存区域
  • 该区域的大小可通过参数设置

方法区

作用:是各个线程共享的内存区域。它用于存储类信息、常量、静态变量、即时编译后的代码等数据。

对这块区域进行垃圾回收的主要目标是对常量池的回收和对类的卸载,但是一般比较难实现。

HotSpot 虚拟机把它当成永久代来进行垃圾回收。但很难确定永久代的大小,因为它受到很多因素影响,并且每次 Full GC 之后永久代的大小都会改变,所以经常会抛出 OutOfMemoryError 异常。为了更容易管理方法区,从 JDK 1.8 开始,移除永久代,并把方法区移至元空间,它位于本地内存中,而不是虚拟机内存中

运行时常量池

(2020.1.5 更新)
运行时常量池(Runtime Constant Pool)是方法区的一部分。Class文件中除了有类的版本、字段、方法、接口等描述信息外,还有一项信息时常量池(Constant Pool Table),用于存放编译期生成的各种字面量和符号引用,这些内容将在类加载后进入方法区的运行时常量池中存放。

2.Java对象模型

Java是一种面向对象的语言,而Java对象在JVM中的存储也是有一定的结构的。而这个关于Java对象自身的存储模型称之为Java对象模型。

每一个Java类,在被JVM加载的时候,JVM会给这个类创建一个instanceKlass,保存在方法区,用来在JVM层表示该Java类。当我们在Java代码中,使用new创建一个对象的时候,JVM会创建一个instanceOopDesc对象,这个对象中包含了对象头以及实例数据。
Java面试08——JVM知识点汇总_第4张图片
注意:
1.JVM内存结构,和Java虚拟机的运行时区域有关。
2.Java对象模型,和Java对象在虚拟机中的表现形式有关。

对象的创建及内存分配

(2020.1.6 更新)
在面向对象的编程语言中,创建对象通常是简单的使用new关键字。但在JVM中,遇到一条new指令时,首先将去检查这个指令的参数是否在常量池中定位到类的符号引用,并且检查这个符号引用代表的类是否被加载、解析和初始化过。如果没有,那必须先执行相应的类加载过程。

在类加载检查通过后,接下来虚拟机将为新生对象分配内存。对象所需的内存大小在类加载完成后便可完全确定,为对象分配空间的任务等同于把一块确定大小的内存从Java堆中划分出来。
分配内存的方式:

  1. 指针碰撞(Bump the pointer):针对Java堆中内存是绝对规整的,用过和没用过的内存各放一边,中间一个指针作为分界点的指示器,这样分配内存就变成把那个指针指向空闲空间移动的问题。
  2. 空闲列表(Free List):针对Java堆中内存是不规整的,已使用的和未使用的内存相互交错,JVM维护一个列表,记录上哪些内存是可用的,在分配时从列表中找到一块足够大的空间划分给对象实例,并更新列表上的记录。

实际应用中,具体使用的是哪种内存分配方式有Java堆中的内存是否规整决定。在使用Serial、ParNew等Compact过程的垃圾收集器时,系统使用的方法是指针碰撞,而是用CMS这种基于Mark-Sweep算法的收集器时采用的是空闲列表。

除此之外,还需要考虑的问题是对象创建在虚拟机中是否是频繁的行为,这在并发下不是线程安全的。通常的解决方案有两种:

  • 对分配内存空间的动作进行同步处理——实际上是JVM采用CAS配上失败重试的方法保证更新操作的原子性。
  • 把分配内存的动作按照线程划分到不同的空间之中进行,也就是每个线程在Java堆中预先分配一块内存,称为本地线程分配缓冲(Thread Local Allocation Buffer,TLAB)。

对象的内存布局

在HotSpot虚拟机中,对象在内存中的存储的布局可以分为3块内存区域:对象头(Header)、实例数据(Instance Data)和对象填充(Padding)
Java面试08——JVM知识点汇总_第5张图片
实例数据部分是对象真正存储的有效信息,也是在代码中多定义的各种类型的字段内容。

对象填充不是必然存在的,也没有特殊意义,仅仅起着占位符的作用。

3.垃圾回收(GC) 非常重要!

在Java的运行时数据区中,程序计数器、虚拟机栈、本地方法栈三个区域都是线程私有的,随线程而生,随线程而灭,在方法结束或线程结束时,内存自然就跟着回收了,不需要过多考虑回收的问题。
而Java堆和方法区则不一样,一个接口中的多个实现类需要的内存可能不一样,一个方法中的多个分支需要的内存也可能不一样,我们只有在程序处于运行期间才能知道会创建哪些对象,这部分内存的分配和回收都是动态的,垃圾回收器关注的是方法区进行。

GC主要回答了以下三个问题:

  • 哪些内存需要回收?
  • 什么时候回收?
  • 如何回收?

就这三个问题,接下来做具体叙述。

对象存活判定算法

在堆里存放着Java世界中几乎所有的对象实例,垃圾收集器在对堆进行回收前,首要的就是确定这些对象中哪些还“存活”着,哪些已经“死去”(即不可能再被任何途径使用的对象)。

1.引用计数算法
引用计数算法是在JVM中被摒弃的一种对象存活判定算法,不过它也有一些知名的应用场景(如Python、FlashPlayer),因此在这里也简单介绍一下。

用引用计数器判断对象是否存活的过程是这样的:给对象中添加一个引用计数器,每当有一个地方引用它时,计数器加1;当引用失效时,计数器减1;任何时刻计数器为0的对象就是不可能再被使用的。

引用计数算法的实现简单,判定效率也很高,大部分情况下是一个不错的算法。它没有被JVM采用的原因是它很难解决对象之间循环引用的问题

下面这个例子,在两个对象出现循环引用的情况下,此时引用计数器永远不为 0,导致无法对它们进行回收。

public class Test {
    public Object instance = null;
    public static void main(String[] args) {
        Test a = new Test();
        Test b = new Test();
        a.instance = b;
        b.instance = a;
	    a=null;
		b=null;
		System.gc();	
    }
}

对象a 和对象b都有字段instance,赋值令a.instance = b;b = a;除此之外,这两个对象再无引用。如果JVM采用引用计数算法来管理内存,这两个对象不可能再被访问,但是他们互相引用着对方,导致它们引用计数不为0,所以引用计数器无法通知GC收集器回收它们。

而事实上执行这段代码,a和b是可以被回收的,下面一节将介绍JVM实际使用的存活判定算法。

2.可达性分析算法
将 GC Roots 作为起始点进行搜索,可达的对象都是存活的,不可达的对象可被回收。

Java 虚拟机使用该算法来判断对象是否可被回收,在 Java 中 GC Roots 一般包含以下内容(重要,简单理解 是不被GC管理的 可作为GC Roots):

  • 虚拟机栈栈帧中的局部变量表(Local Variable Table)中引用的对象
  • 本地方法栈中 JNI (Native方法)中引用的对象
  • 方法区中类静态属性引用的对象
  • 方法区中的常量引用的对象
    Java面试08——JVM知识点汇总_第6张图片
    可以概括得出,可作为GC Roots的节点主要在全局性的引用与执行上下文中。要明确的是,tracing gc必须以当前存活的对象集为Roots,因此必须选取确定存活的引用类型对象。GC管理的区域是Java堆,虚拟机栈、方法区和本地方法栈不被GC所管理,因此选用这些区域内引用的对象作为GC Roots,是不会被GC所回收的。其中虚拟机栈和本地方法栈都是线程私有的内存区域,只要线程没有终止,就能确保它们中引用的对象的存活。而方法区中类静态属性引用的对象是显然存活的。常量引用的对象在当前可能存活,因此,也可能是GC roots的一部分。

3.两次标记与 finalize()方法
即使在可达性分析算法中不可达的对象,也不是一定会死亡的,它们暂时都处于“缓刑”阶段,要真正宣告一个对象“死亡”,至少要经历两次标记过程:

如果对象在进行可达性分析后发现没有与 GC Roots相连接的引用链,那它将会被第一次标记并且进行一次筛选,筛选的条件是此对象是否有必要执行finalize()方法。当对象没有覆盖finalize()方法,或者finalize()方法已经被虚拟机调用过,虚拟机将这两种情况都视为“没有必要执行”。

如果这个对象被判定为有必要执行finalize()方法,那么此对象将会放置在一个叫做 F-Queue 的队列中,并在稍后由一个虚拟机自动建立的、低优先级的Finalizer线程去执行它。这里所谓的“执行”是指虚拟机会触发此方法,但并不承诺会等待它运行结束,原因是:如果一个对象在finalize()方法中执行缓慢,或者发生了死循环(更极端的情况),将很可能导致F-Queue 队列中的其它对象永久处于等待,甚至导致整个内存回收系统崩溃。

finalize()方法是对象逃脱死亡命运的最后一次机会,稍后GC将对F-Queue 队列中的对象进行第二次小规模的标记。如果对象想在finalize()方法中成功拯救自己,只要重新与引用链上的任何一个对象建立关联即可,例如把自己(this关键字)赋值给某个类变量或者对象的成员变量,这样在第二次标记时它将被移出“即将回收”的集合;如果对象这时候还没有逃脱,基本上它就真的被回收了。

值得注意的是,如果代码中有两段一模一样的代码段,执行结果却是一次逃脱成功,一次失败。这是因为任何一个对象的finalize()方法都只会被系统调用一次,如果对象面临下一次回收,它的finalize()方法不会再被执行,因此第二次逃脱行动失败。

需要说明的是,使用finalize()方法来“拯救”对象是不值得提倡的,因为它不是C/C++中的析构函数,而是Java刚诞生时为了使C/C++程序员更容易接受它所做的一个妥协。它的运行代价高昂,不确定性大,无法保证各个对象的调用顺序。finalize() 能做的工作,使用try-finally或者其它方法都更适合、及时,所以笔者建议大家可以忘掉此方法存在。

4.方法区的回收
因为方法区主要存放永久代对象,而永久代对象的回收率比新生代低很多,所以在方法区上进行回收性价比不高。

主要是对常量池的回收和对类的卸载

为了避免内存溢出,在大量使用反射、动态代理的场景都需要虚拟机具备类卸载功能。

类的卸载条件很多,需要满足以下三个条件,但是满足了也不一定会被卸载:
1.该类所有的实例都已经被回收,此时堆中不存在该类的任何实例。
2.加载该类的 ClassLoader 已经被回收。
3.该类对应的 Class 对象没有在任何地方被引用,也就无法在任何地方通过反射访问该类方法。

这里要注意的是在JDK 1.8中,JVM摒弃了永久代,用元空间来作为方法区的实现,下面介绍的将是元空间的垃圾回收

元空间的内存管理由元空间虚拟机来完成。先前,对于类的元数据我们需要不同的垃圾回收器进行处理,现在只需要执行元空间虚拟机的C++代码即可完成。在元空间中,类和其元数据的生命周期和其对应的类加载器是相同的。话句话说,只要类加载器存活,其加载的类的元数据也是存活的,因而不会被回收掉。

我们从行文到现在提到的元空间稍微有点不严谨。准确的来说,每一个类加载器的存储区域都称作一个元空间,所有的元空间合在一起就是我们一直说的元空间。当一个类加载器被垃圾回收器标记为不再存活,其对应的元空间会被回收。在元空间的回收过程中没有重定位和压缩等操作。但是元空间内的元数据会进行扫描来确定Java引用。

4. finalize()
类似 C++ 的析构函数,用于关闭外部资源。try-finally 等方式可以做的更好,并且该方法运行代价很高,不确定性大,无法保证各个对象的调用顺序,因此最好不要使用。

当一个对象可被回收时,如果需要执行该对象的 finalize() 方法,那么就有可能在该方法中让对象重新被引用,从而实现自救。自救只能进行一次,如果回收的对象之前调用了 finalize() 方法自救,后面回收时不会再调用该方法。

垃圾收集算法

本节将介绍几种垃圾收集算法的思想及其发展过程,具体的实现将在稍后介绍。

1.标记-清除(Mark-Sweep)算法
标记-清除(Mark-Sweep)算法是最基础的垃圾收集算法,后续的收集算法都是基于它的思路并对其不足进行改进而得到的。顾名思义,算法分成“标记”、“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象,标记过程在前一节讲述对象标记判定时已经讲过了。

标记-清除算法的不足主要有以下两点:

  • 空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后在程序运行过程中需要分配较大对象时,无法找到足够的连续内存而不得不触发另一次垃圾收集动作。
  • 效率问题,因为内存碎片的存在,操作会变得更加费时,因为查找下一个可用空闲块已不再是一个简单操作。

标记-清除算法的执行过程如下图所示:
Java面试08——JVM知识点汇总_第7张图片
2.复制(Copying)算法
为了解决标记-清除算法的效率问题,一种称为“复制”(Copying)的收集算法出现了,思想为:它将可用内存按容量分成大小相等的两块,每次只使用其中的一块。当这一块内存用完,就将还存活着的对象复制到另一块上面,然后再把已使用过的内存空间一次清理掉

这样做使得每次都是对整个半区进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。只是这种算法的代价是将内存缩小为原来的一半,代价可能过高了。复制算法的执行过程如下图所示:
Java面试08——JVM知识点汇总_第8张图片
Minor GC与复制算法
现在的商业虚拟机都使用复制算法来回收新生代。新生代的GC又叫“Minor GC”,IBM公司的专门研究表明:新生代中的对象98%是“朝生夕死”的,所以Minor GC非常频繁,一般回收速度也比较快,同时“朝生夕死”的特性也使得Minor GC使用复制算法时不需要按照1:1的比例来划分新生代内存空间。

Minor GC过程
事实上,新生代将内存分为一块较大的Eden空间和两块较小的Survivor空间(From Survivor和To Survivor),每次Minor GC都使用Eden和From Survivor,当回收时,将Eden和From Survivor中还存活着的对象都一次性地复制到另外一块To Survivor空间上,最后清理掉Eden和刚使用的Survivor空间。一次Minor GC结束的时候,Eden空间和From Survivor空间都是空的,而To Survivor空间里面存储着存活的对象。在下次MinorGC的时候,两个Survivor空间交换他们的标签,现在是空的“From” Survivor标记成为“To”,“To” Survivor标记为“From”。因此,在MinorGC结束的时候,Eden空间是空的,两个Survivor空间中的一个是空的,而另一个存储着存活的对象。

HotSpot虚拟机默认的Eden : Survivor的比例是8 : 1,由于一共有两块Survivor,所以每次新生代中可用内存空间为整个新生代容量的90%(80%+10%),只有10%的容量会被“浪费”。

分配担保
上文说的98%的对象可回收只是一般场景下的数据,我们没有办法保证每次回收都只有不多于10%的对象存活,当Survivor空间不够用时,需要依赖老年代内存进行分配担保(Handle Promotion)。如果另外一块Survivor上没有足够空间存放上一次新生代收集下来的存活对象,这些对象将直接通过分配担保机制进入老年代。

3.标记-整理(Mark-Compact)算法
复制算法在对象存活率较高时要进行较多的复制操作,效率将会变低。更关键的是:如果不想浪费50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用复制算法

根据老年代的特点,标记-整理(Mark-Compact)算法被提出来,主要思想为:此算法的标记过程与标记-清除算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉边界以外的内存。具体示意图如下所示:
Java面试08——JVM知识点汇总_第9张图片
4.分代收集(Generational Collection)算法
当前商业虚拟机的垃圾收集都采用分代收集(Generational Collection)算法,此算法相较于前几种没有什么新的特征,主要思想为:根据对象存活周期的不同将内存划分为几块,一般是把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适合的收集算法

  • 新生代 在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。

  • 老年代 在老年代中,因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记-清除”或“标记-整理”算法来进行回收。

HotSpot的算法实现

前面两大节主要从理论上介绍了对象存活判定算法和垃圾收集算法,而在HotSpot虚拟机上实现这些算法时,必须对算法的执行效率有严格的考量,才能保证虚拟机高效运行。

1.枚举根节点
从可达性分析中从GC Roots节点找引用链这个操作为例,可作为GC Roots的节点主要在全局性的引用(例如常量或类静态属性)与执行上下文(例如栈帧中的局部变量表)中,现在很多应用仅仅方法区就有数百兆,如果要逐个检查这里面的引用,那么必然会消耗很多时间。

2.GC停顿(”Stop The World”)
另外,可达性分析工作必须在一个能确保一致性的快照中进行——这里“一致性”的意思是指在整个分析期间整个执行系统看起来就像被冻结在某个时间点上,不可以出现分析过程中对象引用关系还在不断变化的情况,这是保证分析结果准确性的基础。这点是导致GC进行时必须停顿所有Java执行线程(Sun将这件事情称为“Stop The World”)的其中一个重要原因,即使是在号称(几乎)不会发生停顿的CMS收集器中,枚举根节点时也是必须要停顿的。

3.准确式GC与OopMap
由于目前的主流Java虚拟机使用的都是准确式GC(即使用准确式内存管理,虚拟机可用知道内存中某个位置的数据具体是什么类型),所以当执行系统停顿下来后,并不需要一个不漏地检查完所有执行上下文和全局的引用位置,虚拟机应当是有办法直接得知哪些地方存放着对象引用。在HotSpot的实现中,是使用一组称为OopMap的数据结构来达到这个目的的,在类加载完成的时候,HotSpot就把对象内什么偏移量上是什么类型的数据计算出来,在JIT编译过程中,也会在特定的位置记录下栈和寄存器中哪些位置是引用。这样,GC在扫描时就可以直接得知这些信息了。

4.安全点(Safepoint)——进行GC时程序停顿的位置
在OopMap的协助下,HotSpot可以快速且准确地完成GC Roots枚举,但一个很现实的问题随之而来:可能导致引用关系变化,或者说OopMap内容变化的指令非常多,如果为每一条指令都生成对应的OopMap,那将会需要大量的额外空间,这样GC的空间成本将会变得很高。

为此,HotSpot选择不为每条指令都生成OopMap,而是只在“特定的位置”记录这些信息,这些位置便被称为安全点(Safepoint)。也就是说,程序执行时并非在所有地方都能停顿下来开始GC,只有在到达安全点时才能暂停。Safepoint的选定既不能太少以致于让GC等待时间太长,也不能过于频繁以致于过分增大运行时的负荷。所以,安全点的选定基本上是以程序“是否具有让程序长时间执行的特征”为标准进行选定的——因为每条指令执行的时间都非常短暂,程序不太可能因为指令流长度太长这个原因而过长时间运行,“长时间执行”的最明显特征就是指令序列复用,例如方法调用、循环跳转、异常跳转等,所以具有这些功能的指令才会产生Safepoint。

对于Sefepoint,另一个需要考虑的问题是如何在GC发生时让所有线程(这里不包括执行JNI调用的线程)都“跑”到最近的安全点上再停顿下来。这里有两种方案可供选择:

  • 抢先式中断(Preemptive Suspension) 抢先式中断不需要线程的执行代码主动去配合,在GC发生时,首先把所有线程全部中断,如果发现有线程中断的地方不在安全点上,就恢复线程,让它“跑”到安全点上。现在几乎没有虚拟机实现采用抢先式中断来暂停线程从而响应GC事件。
  • 主动式中断(Voluntary Suspension): 主动式中断的思想是当GC需要中断线程的时候,不直接对线程操作,仅仅简单地设置一个标志,各个线程执行时主动去轮询这个标志,发现中断标志为真时就自己中断挂起。轮询标志的地方和安全点是重合的,另外再加上创建对象需要分配内存的地方。

5.安全区域(Safe Region)
Safepoint机制保证了程序执行时,在不太长的时间内就会遇到可进入GC的Safepoint。但是,程序“不执行”的时候(如线程处于Sleep状态或Blocked状态),这时线程无法响应JVM的中断请求,“走到”安全的地方去中断挂起,这时候就需要安全区域(Safe Region)来解决。

安全区域是指在一段代码片段之中,引用关系不会发生变化。在这个区域中的任意地方开始GC都是安全的。我们也可以把Safe Region看做是被扩展了的Safepoint。

在线程执行到Safe Region中的代码时,首先标识自己已经进入了Safe Region,那样,当在这段时间里JVM要发起GC时,就不用管标识自己为Safe Region状态的线程了。在线程要离开Safe Region时,它要检查系统是否已经完成了根节点枚举(或者是整个GC过程),如果完成了,那线程就继续执行,否则它就必须等待直到收到可以安全离开Safe Region的信号为止。

垃圾收集器

如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。这里讨论的收集器基于JDK1.7 Update 14 之后的HotSpot虚拟机(在此版本中正式提供了商用的G1收集器,之前G1仍处于实验状态),该虚拟机包含的所有收集器如下图所示:
Java面试08——JVM知识点汇总_第10张图片
上图展示了7种作用于不同分代的收集器,如果两个收集器之间存在连线,就说明它们可以搭配使用。虚拟机所处的区域,则表示它是属于新生代收集器还是老年代收集器。Hotspot实现了如此多的收集器,正是因为目前并无完美的收集器出现,只是选择对具体应用最适合的收集器。

首先讲一下垃圾收集器相关的几个概念:
1.并行和并发
并行(Parallel):指多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态。
并发(Concurrent):指用户线程与垃圾收集线程同时执行(但不一定是并行的,可能会交替执行),用户程序在继续运行。而垃圾收集程序运行在另一个CPU上。

2.吞吐量(Throughput)
吞吐量就是CPU用于运行用户代码的时间与CPU总消耗时间的比值,即

吞吐量 = 运行用户代码时间 /(运行用户代码时间 + 垃圾收集时间)。

假设虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%。

3.Minor GC 和 Full GC
新生代GC(Minor GC):指发生在新生代的垃圾收集动作,因为Java对象大多都具备朝生夕灭的特性,所以Minor GC非常频繁,一般回收速度也比较快。具体原理见上一篇文章。

老年代GC(Major GC / Full GC):指发生在老年代的GC,出现了Major GC,经常会伴随至少一次的Minor GC(但非绝对的,在Parallel Scavenge收集器的收集策略里就有直接进行Major GC的策略选择过程)。Major GC的速度一般会比Minor GC慢10倍以上。

新生代收集器

1.Serial收集器
Serial(串行)收集器是最基本、发展历史最悠久的收集器,它是采用复制算法的新生代收集器,曾经(JDK 1.3.1之前)是虚拟机新生代收集的唯一选择。它是一个单线程收集器,只会使用一个CPU或一条收集线程去完成垃圾收集工作,更重要的是它在进行垃圾收集时,必须暂停其他所有的工作线程,直至Serial收集器收集结束为止(“Stop The World”)。这项工作是由虚拟机在后台自动发起和自动完成的,在用户不可见的情况下把用户正常工作的线程全部停掉,这对很多应用来说是难以接收的。

下图展示了Serial 收集器(老年代采用Serial Old收集器)的运行过程:
Java面试08——JVM知识点汇总_第11张图片
实际上到现在为止,它依然是HotSpot虚拟机运行在Client模式下的默认的新生代收集器。它也有着优于其他收集器的地方:简单而高效(与其他收集器的单线程相比),对于限定单个CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得更高的单线程收集效率。

在用户的桌面应用场景中,分配给虚拟机管理的内存一般不会很大,收集几十兆甚至一两百兆的新生代(仅仅是新生代使用的内存,桌面应用基本不会再大了),停顿时间完全可以控制在几十毫秒最多一百毫秒以内,只要不频繁发生,这点停顿时间可以接收。所以,Serial收集器对于运行在Client模式下的虚拟机来说是一个很好的选择。

2.ParNew 收集器
ParNew收集器就是Serial收集器的多线程版本,它也是一个新生代收集器
。除了使用多线程进行垃圾收集外,其余行为包括Serial收集器可用的所有控制参数、收集算法(复制算法)、Stop The World、对象分配规则、回收策略等与Serial收集器完全相同,两者共用了相当多的代码。

ParNew收集器的工作过程如下图(老年代采用Serial Old收集器):Java面试08——JVM知识点汇总_第12张图片
ParNew收集器除了使用多线程收集外,其他与Serial收集器相比并无太多创新之处,但它却是许多运行在Server模式下的虚拟机中首选的新生代收集器,其中有一个与性能无关的重要原因是,除了Serial收集器外,目前只有它能和CMS收集器(Concurrent Mark Sweep)配合工作,CMS收集器是JDK 1.5推出的一个具有划时代意义的收集器,具体内容将在稍后进行介绍。

ParNew 收集器在单CPU的环境中绝对不会有比Serial收集器有更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程技术实现的两个CPU的环境中都不能百分之百地保证可以超越。在多CPU环境下,随着CPU的数量增加,它对于GC时系统资源的有效利用是很有好处的。它默认开启的收集线程数与CPU的数量相同,在CPU非常多的情况下可使用-XX:ParallerGCThreads参数设置

3.Parallel Scavenge 收集器
Parallel Scavenge收集器也是一个并行的多线程新生代收集器,它也使用复制算法。Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标是达到一个可控制的吞吐量(Throughput)。

停顿时间越短就越适合需要与用户交互的程序,良好的响应速度能提升用户体验。而高吞吐量则可以高效率地利用CPU时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。

Parallel Scavenge收集器除了会显而易见地提供可以精确控制吞吐量的参数,还提供了一个参数-XX:+UseAdaptiveSizePolicy,这是一个开关参数,打开参数后,就不需要手工指定新生代的大小(-Xmn)、Eden和Survivor区的比例(-XX:SurvivorRatio)、晋升老年代对象年龄(-XX:PretenureSizeThreshold)等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量,这种方式称为GC自适应的调节策略(GC Ergonomics)。自适应调节策略也是Parallel Scavenge收集器与ParNew收集器的一个重要区别。

另外值得注意的一点是,Parallel Scavenge收集器无法与CMS收集器配合使用,所以在JDK 1.6推出Parallel Old之前,如果新生代选择Parallel Scavenge收集器,老年代只有Serial Old收集器能与之配合使用。

老年代收集器

4.Serial Old收集器
Serial Old 是 Serial收集器的老年代版本,它同样是一个单线程收集器使用“标记-整理”(Mark-Compact)算法

此收集器的主要意义也是在于给Client模式下的虚拟机使用。如果在Server模式下,它还有两大用途:

  • 在JDK1.5 以及之前版本(Parallel Old诞生以前)中与Parallel Scavenge收集器搭配使用。
  • 作为CMS收集器的后备预案,在并发收集发生Concurrent Mode Failure时使用。

它的工作流程与Serial收集器相同,这里再次给出Serial/Serial Old配合使用的工作流程图:
Java面试08——JVM知识点汇总_第13张图片
5.Parallel Old收集器
Parallel Old收集器是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。前面已经提到过,这个收集器是在JDK 1.6中才开始提供的,在此之前,如果新生代选择了Parallel Scavenge收集器,老年代除了Serial Old以外别无选择,所以在Parallel Old诞生以后,“吞吐量优先”收集器终于有了比较名副其实的应用组合,在注重吞吐量以及CPU资源敏感的场合,都可以优先考虑Parallel Scavenge加Parallel Old收集器。Parallel Old收集器的工作流程与Parallel Scavenge相同,这里给出Parallel Scavenge/Parallel Old收集器配合使用的流程图:
Java面试08——JVM知识点汇总_第14张图片
6.CMS收集器
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器,它非常符合那些集中在互联网站或者B/S系统的服务端上的Java应用,这些应用都非常重视服务的响应速度。从名字上(“Mark Sweep”)就可以看出它是基于“标记-清除”算法实现的。

CMS收集器工作的整个流程分为以下4个步骤:

  • 初始标记(CMS initial mark):仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,需要“Stop The World”。
  • 并发标记(CMS concurrent mark):进行GC Roots Tracing的过程,在整个过程中耗时最长,不需要停顿。
  • 重新标记(CMS remark):为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。此阶段也需要“Stop The World”。
  • 并发清除(CMS concurrent sweep):不需要停顿。

由于整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作,所以,从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。通过下图可以比较清楚地看到CMS收集器的运作步骤中并发和需要停顿的时间:
Java面试08——JVM知识点汇总_第15张图片
优点:
CMS是一款优秀的收集器,它的主要优点在名字上已经体现出来了:并发收集、低停顿,因此CMS收集器也被称为并发低停顿收集器(Concurrent Low Pause Collector)。

缺点:

  • 对CPU资源非常敏感 其实,面向并发设计的程序都对CPU资源比较敏感。在并发阶段,它虽然不会导致用户线程停顿,但会因为占用了一部分线程(或者说CPU资源)而导致应用程序变慢,总吞吐量会降低。CMS默认启动的回收线程数是(CPU数量+3)/4,也就是当CPU在4个以上时,并发回收时垃圾收集线程不少于25%的CPU资源,并且随着CPU数量的增加而下降。但是当CPU不足4个时(比如2个),CMS对用户程序的影响就可能变得很大,如果本来CPU负载就比较大,还要分出一半的运算能力去执行收集器线程,就可能导致用户程序的执行速度忽然降低了50%,其实也让人无法接受。
  • 无法处理浮动垃圾(Floating Garbage) 可能出现“Concurrent Mode Failure”失败而导致另一次Full GC的产生。由于CMS并发清理阶段用户线程还在运行着,伴随程序运行自然就还会有新的垃圾不断产生。这一部分垃圾出现在标记过程之后,CMS无法再当次收集中处理掉它们,只好留待下一次GC时再清理掉。这一部分垃圾就被称为“浮动垃圾”。也是由于在垃圾收集阶段用户线程还需要运行,那也就还需要预留有足够的内存空间给用户线程使用,因此CMS收集器不能像其他收集器那样等到老年代几乎完全被填满了再进行收集,需要预留一部分空间提供并发收集时的程序运作使用。
  • 标记-清除算法导致的空间碎片 CMS是一款基于“标记-清除”算法实现的收集器,这意味着收集结束时会有大量空间碎片产生。空间碎片过多时,将会给大对象分配带来很大麻烦,往往出现老年代空间剩余,但无法找到足够大连续空间来分配当前对象。

7.G1收集器(重要!!!)
G1(Garbage-First)收集器是当今收集器技术发展最前沿的成果之一,它是一款面向服务端应用的垃圾收集器,HotSpot开发团队赋予它的使命是(在比较长期的)未来可以替换掉JDK 1.5中发布的CMS收集器。与其他GC收集器相比,G1具备如下特点:

  • 并行与并发 G1 能充分利用多CPU、多核环境下的硬件优势,使用多个CPU来缩短“Stop The World”停顿时间,部分其他收集器原本需要停顿Java线程执行的GC动作,G1收集器仍然可以通过并发的方式让Java程序继续执行。
  • 分代收集 与其他收集器一样,分代概念在G1中依然得以保留。虽然G1可以不需要其他收集器配合就能独立管理整个GC堆,但它能够采用不同方式去处理新创建的对象和已存活一段时间、熬过多次GC的旧对象来获取更好的收集效果。
  • 空间整合 G1从整体来看是基于“标记-整理”算法实现的收集器,从局部(两个Region之间)上来看是基于“复制”算法实现的。这意味着G1运行期间不会产生内存空间碎片,收集后能提供规整的可用内存。此特性有利于程序长时间运行,分配大对象时不会因为无法找到连续内存空间而提前触发下一次GC。
  • 可预测的停顿 这是G1相对CMS的一大优势,降低停顿时间是G1和CMS共同的关注点,但G1除了降低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为M毫秒的时间片段内,消耗在GC上的时间不得超过N毫秒,这几乎已经是实时Java(RTSJ)的垃圾收集器的特征了。

横跨整个堆内存
在G1之前的其他收集器进行收集的范围都是整个新生代或者老生代,而G1不再是这样。G1在使用时,Java堆的内存布局与其他收集器有很大区别,它将整个Java堆划分为多个大小相等的独立区域(Region),虽然还保留新生代和老年代的概念,但新生代和老年代不再是物理隔离的了,而都是一部分Region(不需要连续)的集合
Java面试08——JVM知识点汇总_第16张图片
通过引入 Region 的概念,从而将原来的一整块内存空间划分成多个的小空间,使得每个小空间可以单独进行垃圾回收。这种划分方法带来了很大的灵活性,使得可预测的停顿时间模型成为可能。通过记录每个 Region 垃圾回收时间以及回收所获得的空间(这两个值是通过过去回收的经验获得),并维护一个优先列表,每次根据允许的收集时间,优先回收价值最大的 Region。

建立可预测的时间模型
G1收集器之所以能建立可预测的停顿时间模型,是因为它可以有计划地避免在整个Java堆中进行全区域的垃圾收集。G1跟踪各个Region里面的垃圾堆积的价值大小(回收所获得的空间大小以及回收所需时间的经验值),在后台维护一个优先列表,每次根据允许的收集时间,优先回收价值最大的Region(这也就是Garbage-First名称的来由)。这种使用Region划分内存空间以及有优先级的区域回收方式,保证了G1收集器在有限的时间内可以获取尽可能高的收集效率。

避免全堆扫描——Remembered Set
G1把Java堆分为多个Region,就是“化整为零”。但是Region不可能是孤立的,一个对象分配在某个Region中,可以与整个Java堆任意的对象发生引用关系。在做可达性分析确定对象是否存活的时候,需要扫描整个Java堆才能保证准确性,这显然是对GC效率的极大伤害。

为了避免全堆扫描的发生,虚拟机为G1中每个Region维护了一个与之对应的Remembered Set。虚拟机发现程序在对Reference类型的数据进行写操作时,会产生一个Write Barrier暂时中断写操作,检查Reference引用的对象是否处于不同的Region之中(在分代的例子中就是检查是否老年代中的对象引用了新生代中的对象),如果是,便通过CardTable把相关引用信息记录到被引用对象所属的Region的Remembered Set之中。当进行内存回收时,在GC根节点的枚举范围中加入Remembered Set即可保证不对全堆扫描也不会有遗漏。

如果不计算维护Remembered Set的操作,G1收集器的运作大致可划分为以下几个步骤:

  • 初始标记(Initial Marking) 仅仅只是标记一下GC Roots 能直接关联到的对象,并且修改TAMS(Nest Top Mark Start)的值,让下一阶段用户程序并发运行时,能在正确可以的Region中创建对象,此阶段需要停顿线程,但耗时很短。
  • 并发标记(Concurrent Marking) 从GC Root 开始对堆中对象进行可达性分析,找到存活对象,此阶段耗时较长,但可与用户程序并发执行
  • 最终标记(Final Marking) 为了修正在并发标记期间因用户程序继续运作而导致标记产生变动的那一部分标记记录,虚拟机将这段时间对象变化记录在线程的Remembered Set Logs里面,最终标记阶段需要把Remembered Set Logs的数据合并到Remembered Set中,这阶段需要停顿线程,但是可并行执行。
  • 筛选回收(Live Data Counting and Evacuation) 首先对各个Region中的回收价值和成本进行排序,根据用户所期望的GC 停顿是时间来制定回收计划。此阶段其实也可以做到与用户程序一起并发执行,但是因为只回收一部分Region,时间是用户可控制的,而且停顿用户线程将大幅度提高收集效率。

通过下图可以比较清楚地看到G1收集器的运作步骤中并发和需要停顿的阶段(Safepoint处):
Java面试08——JVM知识点汇总_第17张图片
最后,我们对上述讨论的7个垃圾收集器进行一个小的总结:
Java面试08——JVM知识点汇总_第18张图片
高频的面试考点:G1和CMS的区别
Java面试08——JVM知识点汇总_第19张图片

4.内存分配与回收策略

首先,南国讲一下Minor GC 和 Full GC

  • Minor GC:回收新生代上,因为新生代对象存活时间很短,因此 Minor GC 会频繁执行,执行的速度一般也会比较快。
  • Full GC:回收老年代和新生代,老年代对象其存活时间长,因此 Full GC 很少执行,执行速度会比 Minor GC 慢很多。

内存分配策略

1.对象优先在 Eden 分配
大多数情况下,对象在新生代 Eden 区分配,当 Eden 区空间不够时,发起 Minor GC。

2.大对象直接进入老年代
大对象是指需要连续内存空间的对象,最典型的大对象是那种很长的字符串以及数组。

经常出现大对象会提前触发垃圾收集以获取足够的连续空间分配给大对象。

-XX:PretenureSizeThreshold,大于此值的对象直接在老年代分配,避免在 Eden 区和 Survivor 区之间的大量内存复制。

3. 长期存活的对象进入老年代
为对象定义年龄计数器,对象在 Eden 出生并经过 Minor GC 依然存活,将移动到 Survivor 中,年龄就增加 1 岁,增加到一定年龄则移动到老年代中。

-XX:MaxTenuringThreshold 用来定义年龄的阈值。

4. 动态对象年龄判定
虚拟机并不是永远地要求对象的年龄必须达到 MaxTenuringThreshold 才能晋升老年代,如果在 Survivor 中相同年龄所有对象大小的总和大于 Survivor 空间的一半,则年龄大于或等于该年龄的对象可以直接进入老年代,无需等到 MaxTenuringThreshold 中要求的年龄。

5. 空间分配担保
在发生 Minor GC 之前,虚拟机先检查老年代最大可用的连续空间是否大于新生代所有对象总空间,如果条件成立的话,那么 Minor GC 可以确认是安全的。

如果不成立的话虚拟机会查看 HandlePromotionFailure 设置值是否允许担保失败,如果允许那么就会继续检查老年代最大可用的连续空间是否大于历次晋升到老年代对象的平均大小,如果大于,将尝试着进行一次 Minor GC;如果小于,或者 HandlePromotionFailure 设置不允许冒险,那么就要进行一次 Full GC。

Full GC 的触发条件

对于 Minor GC,其触发条件非常简单,当 Eden 空间满时,就将触发一次 Minor GC。而 Full GC 则相对复杂,有以下条件:

1. 调用 System.gc()
只是建议虚拟机执行 Full GC,但是虚拟机不一定真正去执行。不建议使用这种方式,而是让虚拟机管理内存。

2. 老年代空间不足
老年代空间不足的常见场景为前文所讲的大对象直接进入老年代、长期存活的对象进入老年代等。

为了避免以上原因引起的 Full GC,应当尽量不要创建过大的对象以及数组。除此之外,可以通过 -Xmn 虚拟机参数调大新生代的大小,让对象尽量在新生代被回收掉,不进入老年代。还可以通过 -XX:MaxTenuringThreshold 调大对象进入老年代的年龄,让对象在新生代多存活一段时间。

3. 空间分配担保失败
使用复制算法的 Minor GC 需要老年代的内存空间作担保,如果担保失败会执行一次 Full GC。具体内容请参考上面的第五小节。

4. JDK 1.7 及以前的永久代空间不足
在 JDK 1.7 及以前,HotSpot 虚拟机中的方法区是用永久代实现的,永久代中存放的为一些 Class 的信息、常量、静态变量等数据。

当系统中要加载的类、反射的类和调用的方法较多时,永久代可能会被占满,在未配置为采用 CMS GC 的情况下也会执行 Full GC。如果经过 Full GC 仍然回收不了,那么虚拟机会抛出 java.lang.OutOfMemoryError。

为避免以上原因引起的 Full GC,可采用的方法为增大永久代空间或转为使用 CMS GC。

5. Concurrent Mode Failure
执行 CMS GC 的过程中同时有对象要放入老年代,而此时老年代空间不足(可能是 GC 过程中浮动垃圾过多导致暂时性的空间不足),便会报 Concurrent Mode Failure 错误,并触发 Full GC。

5.类加载机制

类从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期包括以下7个阶段:

  • 加载(Loading)
  • 验证(Verification)
  • 准备(Preparation)
  • 解析(Resolution)
  • 初始化(Initialization)
  • 使用(Using)
  • 卸载(Unloading)

其中前五个阶段即为类加载的全过程。在后面会进行详细的介绍。而验证、准备、解析3个部分统称为连接(Linking)。这7个阶段的发生顺序如下图:
Java面试08——JVM知识点汇总_第20张图片
在上图中,加载、验证、准备、初始化和卸载这5个阶段的顺序是确定的,类的加载过程必须按照这种顺序按部就班地开始(开始而不是完成,这些阶段是互相交叉着进行的,在一个阶段执行过程中就会激活另一个阶段),而解析阶段则不一定:它在某些情况下可以在初始化阶段之后再开始,这是为了支持Java的运行时绑定(也称为动态绑定或晚期绑定)

类加载过程详解

包含了加载、验证、准备、解析和初始化这 5 个阶段。

1. 加载
加载是类加载的一个阶段,注意不要混淆。

加载过程完成以下三件事:

  • 通过一个类的全限定名来获取定义此类的二进制字节流。
  • 将这个字节流所代表的静态存储结构转化为方法区的运行时存储结构。
  • 在内存中生成一个代表这个类的 Class 对象,作为方法区这个类的各种数据的访问入口。

其中二进制字节流可以从以下方式中获取:

  • 从 ZIP 包读取,成为 JAR、EAR、WAR 格式的基础。
  • 从网络中获取,最典型的应用是 Applet。
  • 运行时计算生成,例如动态代理技术,在 java.lang.reflect.Proxy 使用 ProxyGenerator.generateProxyClass 的代理类的二进制字节流。
  • 由其他文件生成,例如由 JSP 文件生成对应的 Class 类。

2. 验证
确保 Class 文件的字节流中包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。

从整体上看,验证阶段大致上会完成下面4个阶段的检测动作:文件格式验证、元数据验证、字节码验证、符号引用验证。
3. 准备
类变量是被 static 修饰的变量,准备阶段为类变量分配内存并设置初始值,使用的是方法区的内存。

需要注意的是这时候进行内存分配的仅包括类变量(被static修饰的变量),而不包括实例变量。实例变量不会在这阶段分配内存,它将会在对象实例化时随着对象一起分配在堆中。

注意,实例化不是类加载的一个过程,类加载发生在所有实例化操作之前,并且类加载只进行一次,实例化可以进行多次。

初始值一般为 0 值,例如下面的类变量 value 被初始化为 0 而不是 123。

public static int value = 123;

如果类变量是常量,那么会按照表达式来进行初始化,而不是赋值为 0。

public static final int value = 123;

4. 解析
将常量池的符号引用替换为直接引用的过程。
这里解释一下符号引用和直接引用之间的关联:

  • 符号引用(Sysbolic References):符号引用一组符号来描述所引用的目标,符号可以是任何形式的字面量,只要使用时能无歧义的定位到目标即可。
  • 直接引用(Direct References):直接引用可以是直接指向目标的指针、相对偏移量或者是一个间接定位到目标的句柄。

其中解析过程在某些情况下可以在初始化阶段之后再开始,这是为了支持 Java 的动态绑定。

5. 初始化
初始化阶段才真正开始执行类中定义的 Java 程序代码。初始化阶段即虚拟机执行类构造器 () 方法的过程。在准备阶段,类变量已经赋过一次系统要求的初始值,而在初始化阶段,根据程序员通过程序制定的主观计划去初始化类变量和其它资源。

public class Test {
    static {
        i = 0;                // 给变量赋值可以正常编译通过
        System.out.print(i);  // 这句编译器会提示“非法向前引用”
    }
    static int i = 1;
}

由于父类的 () 方法先执行,也就意味着父类中定义的静态语句块的执行要优先于子类。例如以下代码:

static class Parent {
    public static int A = 1;
    static {
        A = 2;
    }
}

static class Sub extends Parent {
    public static int B = A;
}

public static void main(String[] args) {
     System.out.println(Sub.B);  // 2
}

接口中不可以使用静态语句块,但仍然有类变量初始化的赋值操作,因此接口与类一样都会生成 () 方法。但接口与类不同的是,执行接口的 () 方法不需要先执行父接口的 () 方法。只有当父接口中定义的变量使用时,父接口才会初始化。另外,接口的实现类在初始化时也一样不会执行接口的 () 方法。

虚拟机会保证一个类的 () 方法在多线程环境下被正确的加锁和同步,如果多个线程同时初始化一个类,只会有一个线程执行这个类的 () 方法,其它线程都会阻塞等待,直到活动线程执行 () 方法完毕。如果在一个类的 () 方法中有耗时的操作,就可能造成多个线程阻塞,在实际过程中此种阻塞很隐蔽。

类初始化时机

1. 主动引用
虚拟机规范中并没有强制约束何时进行加载,但是规范严格规定了有且只有下列五种情况必须对类进行初始化(加载、验证、准备都会随之发生):

  • 遇到 new、getstatic、putstatic、invokestatic 这四条字节码指令时,如果类没有进行过初始化,则必须先触发其初始化。最常见的生成这 4 条指令的场景是:使用 new 关键字实例化对象的时候;读取或设置一个类的静态字段(被 final 修饰、已在编译期把结果放入常量池的静态字段除外)的时候;以及调用一个类的静态方法的时候。

  • 使用 java.lang.reflect 包的方法对类进行反射调用的时候,如果类没有进行初始化,则需要先触发其初始化。

  • 当初始化一个类的时候,如果发现其父类还没有进行过初始化,则需要先触发其父类的初始化。

  • 当虚拟机启动时,用户需要指定一个要执行的主类(包含 main() 方法的那个类),虚拟机会先初始化这个主类;

  • 当使用 JDK 1.7 的动态语言支持时,如果一个 java.lang.invoke.MethodHandle 实例最后的解析结果为 REF_getStatic, REF_putStatic, REF_invokeStatic 的方法句柄,并且这个方法句柄所对应的类没有进行过初始化,则需要先触发其初始化;

2. 被动引用
以上 5 种场景中的行为称为对一个类进行主动引用。除此之外,所有引用类的方式都不会触发初始化,称为被动引用。被动引用的常见例子包括:

  • 通过子类引用父类的静态字段,不会导致子类初始化。
    System.out.println(SubClass.value); // value 字段在 SuperClass 中定义
  • 通过数组定义来引用类,不会触发此类的初始化。该过程会对数组类进行初始化,数组类是一个由虚拟机自动生成的、直接继承自 Object 的子类,其中包含了数组的属性和方法。
    SuperClass[] sca = new SuperClass[10];
  • 常量在编译阶段会存入调用类的常量池中,本质上并没有直接引用到定义常量的类,因此不会触发定义常量的类的初始化。
    System.out.println(ConstClass.HELLOWORLD);

类与类加载器

两个类相等,需要类本身相等,并且使用同一个类加载器进行加载。这是因为每一个类加载器都拥有一个独立的类名称空间。

这里的相等,包括类的 Class 对象的 equals() 方法、isAssignableFrom() 方法、isInstance() 方法的返回结果为 true,也包括使用 instanceof 关键字做对象所属关系判定结果为 true。

类加载器分类

从 Java 虚拟机的角度来讲,只存在以下两种不同的类加载器:

  • 启动类加载器(Bootstrap ClassLoader),使用 C++ 实现,是虚拟机自身的一部分;

  • 所有其它类的加载器,使用 Java 实现,独立于虚拟机,继承自抽象类 java.lang.ClassLoader。

从 Java 开发人员的角度看,类加载器可以划分得更细致一些:

  • 启动类加载器(Bootstrap ClassLoader)此类加载器负责将存放在 \lib 目录中的,或者被 -Xbootclasspath 参数所指定的路径中的,并且是虚拟机识别的(仅按照文件名识别,如 rt.jar,名字不符合的类库即使放在 lib 目录中也不会被加载)类库加载到虚拟机内存中。启动类加载器无法被 Java 程序直接引用,用户在编写自定义类加载器时,如果需要把加载请求委派给启动类加载器,直接使用 null 代替即可。

  • 扩展类加载器(Extension ClassLoader)这个类加载器是由 ExtClassLoader(sun.misc.Launcher$ExtClassLoader)实现的。它负责将 /lib/ext 或者被 java.ext.dir 系统变量所指定路径中的所有类库加载到内存中,开发者可以直接使用扩展类加载器。

  • 应用程序类加载器(Application ClassLoader)这个类加载器是由 AppClassLoader(sun.misc.Launcher$AppClassLoader)实现的。由于这个类加载器是 ClassLoader 中的 getSystemClassLoader() 方法的返回值,因此一般称为系统类加载器。它负责加载用户类路径(ClassPath)上所指定的类库,开发者可以直接使用这个类加载器,如果应用程序中没有自定义过自己的类加载器,一般情况下这个就是程序中默认的类加载器。

双亲委派模型

应用程序都是由三种类加载器相互配合进行加载的,如果有必要,还可以加入自己定义的类加载器。

下图展示的类加载器之间的层次关系,称为类加载器的双亲委派模型(Parents Delegation Model)。该模型要求除了顶层的启动类加载器外,其余的类加载器都要有自己的父类加载器。这里类加载器之间的父子关系一般通过组合(Composition)关系来实现,而不是通过继承(Inheritance)的关系实现。
Java面试08——JVM知识点汇总_第21张图片
1. 工作过程
Java面试08——JVM知识点汇总_第22张图片

2. 好处
使得 Java 类随着它的类加载器一起具有一种带有优先级的层次关系,从而使得基础类得到统一。

例如 java.lang.Object 存放在 rt.jar 中,如果编写另外一个 java.lang.Object 的类并放到 ClassPath 中,程序可以编译通过。由于双亲委派模型的存在,所以在 rt.jar 中的 Object 比在 ClassPath 中的 Object 优先级更高,这是因为 rt.jar 中的 Object 使用的是启动类加载器,而 ClassPath 中的 Object 使用的是应用程序类加载器。rt.jar 中的 Object 优先级更高,那么程序中所有的 Object 都是这个 Object。

3. 实现
双亲委派的代码都集中在java.lang.ClassLoader的loadClass()方法之中,
先检查类是否已经加载过,如果没有则让父类加载器去加载。当父类加载器加载失败时抛出 ClassNotFoundException,此时尝试自己去加载。

public abstract class ClassLoader {
    // The parent class loader for delegation
    private final ClassLoader parent;

    public Class loadClass(String name) throws ClassNotFoundException {
        return loadClass(name, false);
    }

    protected Class loadClass(String name, boolean resolve) throws ClassNotFoundException {
        synchronized (getClassLoadingLock(name)) {
            // First, check if the class has already been loaded
            Class c = findLoadedClass(name);
            if (c == null) {
                try {
                    if (parent != null) {
                        c = parent.loadClass(name, false);
                    } else {
                        c = findBootstrapClassOrNull(name);
                    }
                } catch (ClassNotFoundException e) {
                    // ClassNotFoundException thrown if class not found
                    // from the non-null parent class loader
                }

                if (c == null) {
                    // If still not found, then invoke findClass in order
                    // to find the class.
                    c = findClass(name);
                }
            }
            if (resolve) {
                resolveClass(c);
            }
            return c;
        }
    }

    protected Class findClass(String name) throws ClassNotFoundException {
        throw new ClassNotFoundException(name);
    }
}

自定义类加载器实现

FileSystemClassLoader 是自定义类加载器,继承自 java.lang.ClassLoader,用于加载文件系统上的类。它首先根据类的全名在文件系统上查找类的字节代码文件(.class 文件),然后读取该文件内容,最后通过 defineClass() 方法来把这些字节代码转换成 java.lang.Class 类的实例。

java.lang.ClassLoader 的 loadClass() 实现了双亲委派模型的逻辑,因此自定义类加载器一般不去重写它,但是需要重写 findClass() 方法。

public class FileSystemClassLoader extends ClassLoader {
    private String rootDir;
    public FileSystemClassLoader(String rootDir) {
        this.rootDir = rootDir;
    }
    protected Class findClass(String name) throws ClassNotFoundException {
        byte[] classData = getClassData(name);
        if (classData == null) {
            throw new ClassNotFoundException();
        } else {
            return defineClass(name, classData, 0, classData.length);
        }
    }
    private byte[] getClassData(String className) {
        String path = classNameToPath(className);
        try {
            InputStream ins = new FileInputStream(path);
            ByteArrayOutputStream baos = new ByteArrayOutputStream();
            int bufferSize = 4096;
            byte[] buffer = new byte[bufferSize];
            int bytesNumRead;
            while ((bytesNumRead = ins.read(buffer)) != -1) {
                baos.write(buffer, 0, bytesNumRead);
            }
            return baos.toByteArray();
        } catch (IOException e) {
            e.printStackTrace();
        }
        return null;
    }
    private String classNameToPath(String className) {
        return rootDir + File.separatorChar
                + className.replace('.', File.separatorChar) + ".class";
    }
}

内存溢出

内存溢出是指应用系统中存在无法回收的内存或使用的内存过多,最终使得程序运行要用到的内存大于虚拟机能提供的最大内存。

原因
引起内存溢出的原因有很多种,常见的有以下几种:
1.内存中加载的数据量过于庞大,如一次从数据库取出过多数据;
2.集合类中有对对象的引用,使用完后未清空,使得JVM不能回收;
3.代码中存在死循环或循环产生过多重复的对象实体;
4.使用的第三方软件中的BUG;
5.启动参数内存值设定的过小;

解决方法
内存溢出虽然很棘手,但也有相应的解决办法,可以按照从易到难,一步步的解决。

第一步,就是修改JVM启动参数,直接增加内存。JVM默认可以使用的内存为64M,Tomcat默认可以使用的内存为128MB,对于稍复杂一点的系统就会不够用。在某项目中,就因为启动参数使用的默认值,经常报“OutOfMemory”错误。因此,-Xms,-Xmx参数一定不要忘记加。

第二步,检查错误日志,查看“OutOfMemory”错误前是否有其它异常或错误。查看日志对于分析内存溢出是非常重要的,通过仔细查看日志,分析内存溢出前做过哪些操作,可以大致定位有问题的模块。

第三步,找出可能发生内存溢出的位置。重点排查以下几点:
1.检查代码中是否有死循环或递归调用。
2.检查是否有大循环重复产生新对象实体。
3.检查对数据库查询中,是否有一次获得全部数据的查询。一般来说,如果一次取十万条记录到内存,就可能引起内存溢出。这个问题比较隐蔽,在上线前,数据库中数据较少,不容易出问题,上线后,数据库中数据多了,一次查询就有可能引起内存溢出。因此对于数据库查询尽量采用分页的方式查询。
4.检查List、MAP等集合对象是否有使用完后,未清除的问题。List、MAP等集合对象会始终存有对对象的引用,使得这些对象不能被GC回收。

第四步,使用内存查看工具动态查看内存使用情况。

内存查看工具有许多,比较有名的有:Optimizeit Profiler、JProbe Profiler、JinSight和Java1.5的Jconsole等。它们的基本工作原理大同小异,都是监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。开发人员可以根据这些信息判断程序是否有内存泄漏问题。一般来说,一个正常的系统在其启动完成后其内存的占用量是基本稳定的,而不应该是无限制的增长的。持续地观察系统运行时使用的内存的大小,可以看到在内存使用监控窗口中是基本规则的锯齿形的图线,如果内存的大小持续地增长,则说明系统存在内存泄漏问题。通过间隔一段时间取一次内存快照,然后对内存快照中对象的使用与引用等信息进行比对与分析,可以找出是哪个类的对象在泄漏。

栈溢出

原因
1.递归调用层次太多。递归函数在运行时会执行压栈操作,当压栈次数太多时,也会导致堆栈溢出。
2.局部静态变量体积太大,局部数组过大。当函数内部的数组过大时,有可能导致堆栈溢出。
3.指针或数组越界。这种情况最常见,例如进行字符串拷贝,或处理用户输入等等。

解决办法
1.用栈把递归转换成非递归
2.使用static对象替代nonstatic局部对象
3.增大堆栈大小值

参考资料:
1.深入理解JVM(2)——GC算法与内存分配策略
2.深入理解JVM(3)——7种垃圾收集器
3.https://github.com/CyC2018/CS-Notes/blob/master/docs/notes/Java%20%E8%99%9A%E6%8B%9F%E6%9C%BA.md
4.https://github.com/zaiyunduan123/Java-Summarize/blob/master/notes/java/Java虚拟机.md

你可能感兴趣的:(Java面试,Java)