高性能序列化框架FST

fst是完全兼容JDK序列化协议的系列化框架,序列化速度大概是JDK的4-10倍,大小是JDK大小的1/3左右。
首先引入pom


  de.ruedigermoeller
  fst
  2.04
 测试代码
package zookeeper.seria;

import java.io.Serializable;

public class FSTSeriazle {

	public static void main(String[] args) {
		User bean = new User();
		bean.setUsername("xxxxx");
		bean.setPassword("123456");
		bean.setAge(1000000);
		System.out.println("序列化 , 反序列化 对比测试:");
		long size = 0;
		long time1 = System.currentTimeMillis();
		for (int i = 0; i < 10000; i++) {
			byte[] jdkserialize = JRedisSerializationUtils.jdkserialize(bean);
			size += jdkserialize.length;
			JRedisSerializationUtils.jdkdeserialize(jdkserialize);
		}
		System.out.println("原生序列化方案[序列化10000次]耗时:"
				+ (System.currentTimeMillis() - time1) + "ms size:=" + size);

		size = 0;
		long time2 = System.currentTimeMillis();
		for (int i = 0; i < 10000; i++) {
			byte[] serialize = JRedisSerializationUtils.serialize(bean);
			size += serialize.length;
			User u = (User) JRedisSerializationUtils.unserialize(serialize);
		}
		System.out.println("fst序列化方案[序列化10000次]耗时:"
				+ (System.currentTimeMillis() - time2) + "ms size:=" + size);
		size = 0;
		long time3 = System.currentTimeMillis();
		for (int i = 0; i < 10000; i++) {
			byte[] serialize = JRedisSerializationUtils.kryoSerizlize(bean);
			size += serialize.length;
			User u = (User) JRedisSerializationUtils.kryoUnSerizlize(serialize);
		}
		System.out.println("kryo序列化方案[序列化10000次]耗时:"
				+ (System.currentTimeMillis() - time3) + "ms size:=" + size);

	}

}

class User implements Serializable{

	private String username;
	private int age;
	private String password;

	public String getUsername() {
		return username;
	}

	public void setUsername(String username) {
		this.username = username;
	}

	public int getAge() {
		return age;
	}

	public void setAge(int age) {
		this.age = age;
	}

	public String getPassword() {
		return password;
	}

	public void setPassword(String password) {
		this.password = password;
	}

}
 结果
序列化 , 反序列化 对比测试:
原生序列化方案[序列化10000次]耗时:458ms size:=1160000
fst序列化方案[序列化10000次]耗时:184ms size:=550000
kryo序列化方案[序列化10000次]耗时:462ms size:=390000
 工具类
package zookeeper.seria;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

import org.nustaq.serialization.FSTConfiguration;

import com.esotericsoftware.kryo.Kryo;
import com.esotericsoftware.kryo.io.Input;
import com.esotericsoftware.kryo.io.Output;

public class JRedisSerializationUtils {

	public JRedisSerializationUtils() {
	}

	static FSTConfiguration configuration = FSTConfiguration
	// .createDefaultConfiguration();
			.createStructConfiguration();

	public static byte[] serialize(Object obj) {
		return configuration.asByteArray(obj);
	}

	public static Object unserialize(byte[] sec) {
		return configuration.asObject(sec);
	}

	public static byte[] kryoSerizlize(Object obj) {
		Kryo kryo = new Kryo();
		byte[] buffer = new byte[2048];
		try(
				Output output = new Output(buffer);
				) {
			
			kryo.writeClassAndObject(output, obj);
			return output.toBytes();
		} catch (Exception e) {
		}
		return buffer;
	}

	static Kryo kryo = new Kryo();
	public static Object kryoUnSerizlize(byte[] src) {
		try(
		Input input = new Input(src);
				){
			return kryo.readClassAndObject(input);
		}catch (Exception e) {
		}
		return kryo;
	}

	// jdk原生序列换方案
	public static byte[] jdkserialize(Object obj) {
		try (ByteArrayOutputStream baos = new ByteArrayOutputStream();
				ObjectOutputStream oos = new ObjectOutputStream(baos);) {
			oos.writeObject(obj);
			return baos.toByteArray();
		} catch (IOException e) {
			throw new RuntimeException(e);
		}
	}

	public static Object jdkdeserialize(byte[] bits) {
		try (ByteArrayInputStream bais = new ByteArrayInputStream(bits);
				ObjectInputStream ois = new ObjectInputStream(bais);

		) {
			return ois.readObject();
		} catch (Exception e) {
			throw new RuntimeException(e);
		}
	}
}
 

你可能感兴趣的:(JAVA)