导入包:
# All Import Statements Defined Here
# Note: Do not add to this list.
# All the dependencies you need, can be installed by running .
# ----------------
import sys
assert sys.version_info[0]==3
assert sys.version_info[1] >= 5
from gensim.models import KeyedVectors
from gensim.test.utils import datapath
import pprint
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = [10, 5]
#导入nltk,并下载新闻数据集
import nltk
nltk.download('reuters')
from nltk.corpus import reuters
import numpy as np
import random
import scipy as sp
#降维
from sklearn.decomposition import TruncatedSVD
from sklearn.decomposition import PCA
#设置token
START_TOKEN = ''
END_TOKEN = ''
#设置相同的seed,使每次生成的随机数相同
np.random.seed(0)
random.seed(0)
# ----------------
单词向量通常被用作下游NLP任务的基本组成部分,例如回答问题、生成文本、翻译等,因此对它们的优缺点建立一些直觉是很重要的。在这里,您将探索两种类型的单词向量:从共现矩阵派生的单词向量,以及通过word2vec派生的单词向量。
Co-Occurrence:
共现矩阵计算某些环境中事物同时发生的频率。考虑到文档中出现了一些单词,我们考虑围绕的上下文窗口。假设我们的固定窗口大小是,那么这就是文档中的前两个单词,即单词-…−1和+1…+。我们建立了一个共现矩阵,它是一个对称的逐字矩阵,其中是出现在窗口内的次数。
Example: Co-Occurrence with Fixed Window of n=1:
Document 1: “all that glitters is not gold”
Document 2: “all is well that ends well”
注意:在NLP中,我们经常添加 START and END符号来表示句子、段落或文档的开始和结束。在这种情况下,我们想象开始和结束标记封装每个文档,例如,“开始所有闪光的不是黄金的结束”,并包括这些标记在我们的共现计数。
这个矩阵的行(或列)提供了一种类型的词向量(基于词-词共现的词向量),但向量通常很大(语料库中不同单词的数量呈线性)。因此,我们的下一步是运行降维。特别地,我们将运行SVD(奇异值分解),这是一种广义PCA(主成分分析)来选择顶部主成分。这是一个用奇异值分解实现维数缩减的可视化。在这幅图中,我们的共现矩阵是,其中行对应于字。我们得到了一个完整的矩阵分解,奇异值排序在对角矩阵中,新的、较短长度的-字向量在中。
这种降维共现表示保留了单词之间的语义关系,例如doctor和hospital比doctor和dog更接近。
Plotting Co-Occurrence Word Embeddings:
#定义read_corpus函数,在输入语句的前后分别加 START 和 END ,并将所有的字母改为小写
def read_corpus(category="crude"):
""" Read files from the specified Reuter's category.
Params:
category (string): category name
Return:
list of lists, with words from each of the processed files
"""
files = reuters.fileids(category)
return [[START_TOKEN] + [w.lower() for w in list(reuters.words(f))] + [END_TOKEN] for f in files]
reuters_corpus = read_corpus()
pprint.pprint(reuters_corpus[:3], compact=True, width=100)
编写一个方法来找出出现在语料库中的不同单词(单词类型)。
def distinct_words(corpus):
""" Determine a list of distinct words for the corpus.
Params:
corpus (list of list of strings): corpus of documents
文档语料库
Return:
corpus_words (list of strings): list of distinct words across the corpus, sorted (using python 'sorted' function)
整个语料库中不同单词列表
num_corpus_words (integer): number of distinct words across the corpus
整个语料库中不同单词数量
"""
corpus_words = []
num_corpus_words = -1
# ------------------
# Write your implementation here.
#首先将corpus中的多个list压成一个list的形式
corpus = [w for _ in corpus for w in _]
#利用set中不含重复元素的性质保留corpus中不同的单词,再使用lsit()将结果转化为list的形式
corpus_words = list(set(corpus))
#使用内置的排序函数sorted()按字母的升序方式进行排序
corpus_words = sorted(corpus_words)
#使用len()获取list的长度
num_corpus_words = len(corpus_words)
# ------------------
print(corpus_words[:], num_corpus_words)
return corpus_words, num_corpus_words
# ---------------------
# Run this sanity check
# Note that this not an exhaustive check for correctness.
# ---------------------
# Define toy corpus
test_corpus = ["START All that glitters isn't gold END".split(" "), "START All's well that ends well END".split(" ")]
test_corpus_words, num_corpus_words = distinct_words(test_corpus)
# Correct answers
ans_test_corpus_words = sorted(list(set(["START", "All", "ends", "that", "gold", "All's", "glitters", "isn't", "well", "END"])))
ans_num_corpus_words = len(ans_test_corpus_words)
# Test correct number of words 测试正确的单词数量
assert(num_corpus_words == ans_num_corpus_words), "Incorrect number of distinct words. Correct: {}. Yours: {}".format(ans_num_corpus_words, num_corpus_words)
# Test correct words 测试正确的单词
assert (test_corpus_words == ans_test_corpus_words), "Incorrect corpus_words.\nCorrect: {}\nYours: {}".format(str(ans_test_corpus_words), str(test_corpus_words))
# Print Success
print ("-" * 80)
print("Passed All Tests!")
print ("-" * 80)
编写一个方法,构造一个特定窗口大小(默认值为4)的共现矩阵,考虑窗口中心单词前和后的单词。这里,我们开始使用numpy(np)来表示向量、矩阵和张量。如果您不熟悉NumPy,在cs231n Python NumPy教程的后半部分有一个NumPy教程。
def compute_co_occurrence_matrix(corpus, window_size=4):
""" Compute co-occurrence matrix for the given corpus and window_size (default of 4).
计算给定语料库和窗口大小(默认为4)的共现矩阵。
Note: Each word in a document should be at the center of a window. Words near edges will have a smaller
number of co-occurring words.
文档中的每个单词都应该位于窗口的中央。靠近边缘的单词会有更少的同时出现的单词。
For example, if we take the document "START All that glitters is not gold END" with window size of 4,
"All" will co-occur with "START", "that", "glitters", "is", and "not".
例如,如果我们取窗口大小为4的文档“START All that glitters is not gold END”,
“All”将与“START”、“that”、“glitters”、“is”和“not”同时出现。
Params:
corpus (list of list of strings): corpus of documents 文档的语料库
window_size (int): size of context window 上下文窗口的大小
Return:
M (numpy matrix of shape (number of corpus words, number of corpus words)): M(形状的numpy矩阵(语料库词数,语料库词数)):
Co-occurence matrix of word counts.
The ordering of the words in the rows/columns should be the same as the ordering of the words given by the distinct_words function.
行/列中单词的顺序应该与distinct_words函数给出的单词的顺序相同。
word2Ind (dict): dictionary that maps word to index (i.e. row/column number) for matrix M.
将单词映射到矩阵M的索引(即行/列号)的字典。
"""
words, num_words = distinct_words(corpus)
M = None
word2Ind = {}
# ------------------
# Write your implementation here.
#定义一个空的词共现矩阵,这里采用零矩阵,因为M为对称阵,所以尺寸为num_words * num_words
M = np.zeros(shape = (num_words,num_words),dtype = np.int32)
#建立words中词和索引的映射关系,将其存到字典word2Int
for i in range(num_words):
word2Ind[words[i]] = i
#对corpus中的每一部分分别进行处理
for sent in corpus:
for p in range(len(sent)):
#找到当前sent中的词在word2Ind中的索引
ci = word2Ind[sent[p]]
#前
#因为某些位置前面词的个数可能会小于window_size,所以如果个数小与window_size就从头开始
for w in sent[max(0,p-window_size):p]:
wi = word2Ind[w]
M[ci][wi] += 1
#后
for w in sent[p + 1:p + 1 + window_size]:
wi = word2Ind[w]
M[ci][wi] += 1
# ------------------
return M, word2Ind
# ---------------------
# Run this sanity check
# Note that this is not an exhaustive check for correctness.
# ---------------------
# Define toy corpus and get student's co-occurrence matrix
test_corpus = ["START All that glitters isn't gold END".split(" "), "START All's well that ends well END".split(" ")]
M_test, word2Ind_test = compute_co_occurrence_matrix(test_corpus, window_size=1)
# Correct M and word2Ind
M_test_ans = np.array(
[[0., 0., 0., 1., 0., 0., 0., 0., 1., 0.,],
[0., 0., 0., 1., 0., 0., 0., 0., 0., 1.,],
[0., 0., 0., 0., 0., 0., 1., 0., 0., 1.,],
[1., 1., 0., 0., 0., 0., 0., 0., 0., 0.,],
[0., 0., 0., 0., 0., 0., 0., 0., 1., 1.,],
[0., 0., 0., 0., 0., 0., 0., 1., 1., 0.,],
[0., 0., 1., 0., 0., 0., 0., 1., 0., 0.,],
[0., 0., 0., 0., 0., 1., 1., 0., 0., 0.,],
[1., 0., 0., 0., 1., 1., 0., 0., 0., 1.,],
[0., 1., 1., 0., 1., 0., 0., 0., 1., 0.,]]
)
word2Ind_ans = {'All': 0, "All's": 1, 'END': 2, 'START': 3, 'ends': 4, 'glitters': 5, 'gold': 6, "isn't": 7, 'that': 8, 'well': 9}
# Test correct word2Ind
assert (word2Ind_ans == word2Ind_test), "Your word2Ind is incorrect:\nCorrect: {}\nYours: {}".format(word2Ind_ans, word2Ind_test)
# Test correct M shape
assert (M_test.shape == M_test_ans.shape), "M matrix has incorrect shape.\nCorrect: {}\nYours: {}".format(M_test.shape, M_test_ans.shape)
# Test correct M values
for w1 in word2Ind_ans.keys():
idx1 = word2Ind_ans[w1]
for w2 in word2Ind_ans.keys():
idx2 = word2Ind_ans[w2]
student = M_test[idx1, idx2]
correct = M_test_ans[idx1, idx2]
if student != correct:
print("Correct M:")
print(M_test_ans)
print("Your M: ")
print(M_test)
raise AssertionError("Incorrect count at index ({}, {})=({}, {}) in matrix M. Yours has {} but should have {}.".format(idx1, idx2, w1, w2, student, correct))
# Print Success
print ("-" * 80)
print("Passed All Tests!")
print ("-" * 80)
构造一种方法,对矩阵进行降维以产生k维的嵌入。使用SVD取顶部的k个分量,并产生一个新的k维嵌入矩阵。
def reduce_to_k_dim(M, k=2):
""" Reduce a co-occurence count matrix of dimensionality (num_corpus_words, num_corpus_words)
to a matrix of dimensionality (num_corpus_words, k) using the following SVD function from Scikit-Learn:
- http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
Params:
M (numpy matrix of shape (number of corpus words, number of corpus words)): co-occurence matrix of word counts
k (int): embedding size of each word after dimension reduction
降维后每个单词的嵌入大小
Return:
M_reduced (numpy matrix of shape (number of corpus words, k)): matrix of k-dimensioal word embeddings.
k维词嵌入矩阵。
In terms of the SVD from math class, this actually returns U * S
"""
n_iters = 10 # Use this parameter in your call to `TruncatedSVD`
M_reduced = None
print("Running Truncated SVD over %i words..." % (M.shape[0]))
# ------------------
# Write your implementation here.
#导入TruncatedSVD函数
svd = TruncatedSVD(n_components = k)
svd.fit(M.T)
M_reduced = svd.components_.T
# ------------------
print("Done.")
return M_reduced
# ---------------------
# Run this sanity check
# Note that this not an exhaustive check for correctness
# In fact we only check that your M_reduced has the right dimensions.
# ---------------------
# Define toy corpus and run student code
test_corpus = ["START All that glitters isn't gold END".split(" "), "START All's well that ends well END".split(" ")]
M_test, word2Ind_test = compute_co_occurrence_matrix(test_corpus, window_size=1)
M_test_reduced = reduce_to_k_dim(M_test, k=2)
# Test proper dimensions
assert (M_test_reduced.shape[0] == 10), "M_reduced has {} rows; should have {}".format(M_test_reduced.shape[0], 10)
assert (M_test_reduced.shape[1] == 2), "M_reduced has {} columns; should have {}".format(M_test_reduced.shape[1], 2)
# Print Success
print ("-" * 80)
print("Passed All Tests!")
print ("-" * 80)
这里你要写一个函数来画出二维空间中的二维向量。对于图,我们将使用Matplotlib (plt)。
def plot_embeddings(M_reduced, word2Ind, words):
""" Plot in a scatterplot the embeddings of the words specified in the list "words".
NOTE: do not plot all the words listed in M_reduced / word2Ind.
Include a label next to each point.
在散点图中绘制“words”列表中指定的单词的嵌入。
Params:
M_reduced (numpy matrix of shape (number of unique words in the corpus , k)): matrix of k-dimensioal word embeddings
word2Ind (dict): dictionary that maps word to indices for matrix M
words (list of strings): words whose embeddings we want to visualize
"""
# ------------------
# Write your implementation here.
for _ in words:
x = M_reduced[word2Ind[_]][0]
y = M_reduced[word2Ind[_]][1]
#画散点图
plt.scatter(x,y,marker= 'x')
plt.text(x,y,_)
plt.show()
# ------------------
# ---------------------
# Run this sanity check
# Note that this not an exhaustive check for correctness.
# The plot produced should look like the "test solution plot" depicted below.
# ---------------------
print ("-" * 80)
print ("Outputted Plot:")
M_reduced_plot_test = np.array([[1, 1], [-1, -1], [1, -1], [-1, 1], [0, 0]])
word2Ind_plot_test = {'test1': 0, 'test2': 1, 'test3': 2, 'test4': 3, 'test5': 4}
words = ['test1', 'test2', 'test3', 'test4', 'test5']
plot_embeddings(M_reduced_plot_test, word2Ind_plot_test, words)
print ("-" * 80)
现在我们将把你写的所有部分放在一起!我们将在Reuters“crude”语料库上计算固定窗口为4的共现矩阵。然后使用TruncatedSVD计算每个单词的二维嵌入。TruncatedSVD返回U*S,因此我们对返回的向量进行归一化,使所有的向量都出现在单位圆的周围(因此亲密是方向上的亲密)。
# -----------------------------
# Run This Cell to Produce Your Plot
# ------------------------------
reuters_corpus = read_corpus()
M_co_occurrence, word2Ind_co_occurrence = compute_co_occurrence_matrix(reuters_corpus)
M_reduced_co_occurrence = reduce_to_k_dim(M_co_occurrence, k=2)
# Rescale (normalize) the rows to make them each of unit-length
M_lengths = np.linalg.norm(M_reduced_co_occurrence, axis=1)
M_normalized = M_reduced_co_occurrence / M_lengths[:, np.newaxis] # broadcasting
words = ['barrels', 'bpd', 'ecuador', 'energy', 'industry', 'kuwait', 'oil', 'output', 'petroleum', 'venezuela']
plot_embeddings(M_normalized, word2Ind_co_occurrence, words)
正如在课堂上讨论的那样,最近更流行的基于谓词的单词向量,例如word2vec。在这里,我们将探讨word2vec生成的嵌入。请重新阅读课堂笔记和幻灯片以获得更多关于word2vec算法的细节。如果你想冒险,挑战一下自己,试着阅读原文。
然后运行以下单元格将word2vec向量加载到内存中。注意:这可能需要几分钟。
def load_word2vec():
""" Load Word2Vec Vectors
Return:
wv_from_bin: All 3 million embeddings, each lengh 300
"""
import gensim.downloader as api
wv_from_bin = api.load("word2vec-google-news-300")
vocab = list(wv_from_bin.vocab.keys())
print("Loaded vocab size %i" % len(vocab))
return wv_from_bin
# -----------------------------------
# Run Cell to Load Word Vectors
# Note: This may take several minutes
# -----------------------------------
wv_from_bin = load_word2vec()
上述代码出现了一些问题,
所以改变方法。
def load_word2vec(embeddings_fp="C:\\Users\\17869\\gensim-data./GoogleNews-vectors-negative300.bin"):
""" Load Word2Vec Vectors
Param:
embeddings_fp (string) - path to .bin file of pretrained word vectors
Return:
wv_from_bin: All 3 million embeddings, each lengh 300
This is the KeyedVectors format: https://radimrehurek.com/gensim/models/deprecated/keyedvectors.html
"""
embed_size = 300
print("Loading 3 million word vectors from file...")
## 自己下载的文件
wv_from_bin = KeyedVectors.load_word2vec_format(embeddings_fp, binary=True)
vocab = list(wv_from_bin.vocab.keys())
print("Loaded vocab size %i" % len(vocab))
return wv_from_bin
wv_from_bin = load_word2vec()
print()
减少Word2Vec单词嵌入的维数:
让我们直接比较word2vec嵌入和共现矩阵的嵌入。运行以下单元格:
1.将300万个word2vec向量放入矩阵M中
2.运行reduce_to_k_dim(被截断的SVD函数)将向量从300维减少到2维。
def get_matrix_of_vectors(wv_from_bin, required_words=['barrels', 'bpd', 'ecuador', 'energy', 'industry', 'kuwait', 'oil', 'output', 'petroleum', 'venezuela']):
""" Put the word2vec vectors into a matrix M.
将word2vec向量放入矩阵M中。
Param:
wv_from_bin: KeyedVectors object; the 3 million word2vec vectors loaded from file
从文件中加载的300万个word2vec向量
Return:
M: numpy matrix shape (num words, 300) containing the vectors
M:包含向量的numpy矩阵形状(num字,300)
word2Ind: dictionary mapping each word to its row number in M
word2Ind:字典将每个单词映射到它在M中的行号
"""
import random
words = list(wv_from_bin.vocab.keys())
print("Shuffling words ...")
random.shuffle(words)
words = words[:10000]
print("Putting %i words into word2Ind and matrix M..." % len(words))
word2Ind = {}
M = []
curInd = 0
for w in words:
try:
M.append(wv_from_bin.word_vec(w))
word2Ind[w] = curInd
curInd += 1
except KeyError:
continue
for w in required_words:
try:
M.append(wv_from_bin.word_vec(w))
word2Ind[w] = curInd
curInd += 1
except KeyError:
continue
M = np.stack(M)
print("Done.")
return M, word2Ind
# -----------------------------------------------------------------
# Run Cell to Reduce 300-Dimensinal Word Embeddings to k Dimensions
#运行单元格将300维的单词嵌入减少到k维
# Note: This may take several minutes
# -----------------------------------------------------------------
M, word2Ind = get_matrix_of_vectors(wv_from_bin)
M_reduced = reduce_to_k_dim(M, k=2)
运行下面的单元格,绘制[‘barrels’, ‘bpd’, ‘ecuador’, ‘energy’, ‘industry’, ‘kuwait’, ‘oil’, ‘output’, ‘petroleum’, ‘venezuela’]的2D word2vec嵌入图。
words = ['barrels', 'bpd', 'ecuador', 'energy', 'industry', 'kuwait', 'oil', 'output', 'petroleum', 'venezuela']
plot_embeddings(M_reduced, word2Ind, words)
Cosine Similarity 余弦相似度:
现在我们有了单词向量,我们需要一种方法来根据这些向量量化单个单词之间的相似性。其中一个度量是余弦相似度。我们将用它来寻找彼此“接近”和“远离”的单词。
我们可以把n维向量想象成n维空间中的点。如果我们采用这种观点,L1和L2距离有助于量化在这两点之间“我们必须走”的空间量。另一种方法是研究两个向量之间的夹角。从三角学中我们知道:
找出一个多义词(例如,“叶子”或“勺子”),使前10个最相似的词(根据余弦相似度)包含两个意思的相关词。例如,“leaves”(叶子)在前10名中有“vanishes”(消失)和“茎秆”(茎秆),“scoop(勺子)”(勺子)有“handed_waffle_cone(华夫饼)”和“lowdown (lowdown)”。在你找到一个多义词之前,你可能需要尝试几个多义词
# ------------------
# Write your polysemous word exploration code here.
wv_from_bin.most_similar("women")
# ------------------
在考虑余弦相似度时,考虑余弦距离通常更方便,即1 -余弦相似度。
找出三个单词(w1,w2,w3),其中w1和w2是同义词,w1和w3是反义词,但是余弦距离(w1,w3) <余弦距离(w1,w2)。例如,w1=“快乐”比w2=“快乐”更接近于w3=“悲伤”。
# ------------------
# Write your synonym & antonym exploration code here.
w1 = "happy"
w2 = "cheerful"
w3 = "sad"
w1_w2_dist = wv_from_bin.distance(w1, w2)
w1_w3_dist = wv_from_bin.distance(w1, w3)
print("Synonyms {}, {} have cosine distance: {}".format(w1, w2, w1_w2_dist))
print("Antonyms {}, {} have cosine distance: {}".format(w1, w3, w1_w3_dist))
# ------------------
Solving Analogies with Word Vectors(用单词向量解决类比):
Word2Vec向量有时显示出解决类比的能力。
举个例子,“男人:国王::女人:x”这个比喻,x是什么?
在下面的单元格中,我们向您展示了如何使用单词向量来查找x。most_similar函数查找与positive列表中单词最相似、与negative列表中单词最不相似的单词。这个类比的答案将是排名最相似的单词(最大的数值)。
# Run this cell to answer the analogy -- man : king :: woman : x
pprint.pprint(wv_from_bin.most_similar(positive=['woman', 'king'], negative=['man']))
根据这些向量找到一个类比的例子(例如,想要的单词排在最前面)。在你的解决方案中,请以x:y:: a:b的形式陈述完整的类比。如果你认为这个类比很复杂,用一两个句子解释为什么这个类比是成立的
# ------------------
# Write your analogy exploration code here.
pprint.pprint(wv_from_bin.most_similar(positive=['China','beijing'], negative=['American']))
# ------------------
根据这些向量找到一个不成立的类比的例子
# ------------------
# Write your incorrect analogy exploration code here.
pprint.pprint(wv_from_bin.most_similar(positive=['China','American'], negative=['Japan']))
# ------------------
重要的是要认识到我们的单词嵌入隐含的偏见(性别、种族、性取向等)。
运行下面的单元格,检查
(a)哪些词与“woman”和“boss”最相似,而与“man”最不相似;
(b)哪些词与“man”和“boss”最相似,而与“woman”最不相似。
你在前10名中发现了什么?
# Run this cell
# Here `positive` indicates the list of words to be similar to and `negative` indicates the list of words to be
# most dissimilar from.
#这里“positive”表示类似的单词列表,而“negative”表示是最不相似于。
pprint.pprint(wv_from_bin.most_similar(positive=['woman', 'boss'], negative=['man']))
print()
pprint.pprint(wv_from_bin.most_similar(positive=['man', 'boss'], negative=['woman']))
使用“most_similar”函数找到另一种情况,其中一些偏差显示的向量。请简要解释你发现的偏见的例子。
# ------------------
# Write your bias exploration code here.
pprint.pprint(wv_from_bin.most_similar(positive=['woman', 'doctor'], negative=['man']))
print()
pprint.pprint(wv_from_bin.most_similar(positive=['woman', 'nurse'], negative=['man']))
# ------------------
是什么导致了向量这个词的偏差呢?
https://blog.csdn.net/Forlogen/article/details/93341527
https://blog.csdn.net/weixin_42691585/article/details/107154134