【语义分割】Fast-SCNN -- Fast Semantic Segmentation Network

paper:Fast-SCNN
github:code


文章目录

        • Abstract
        • Fast-SCNN
          • Network Architecture
          • Pre-training on Auxiliary Tasks
        • Experiment
          • 1、Evaluation on Cityscapes
          • 2、Pre-training and Weakly Labeled Data
          • 3、Lower Input Resolution

Abstract

Fast-SCNN是一个实时的语义分割模型。其基于现有的two-branch方法(BiSeNet),引入了一个learning to downsample模块,在cityscapes上得到68.0%的miou。

FastSCNN采用depthwise separable convolutionsinverse residual blocks

Fast-SCNN

实时语义分割模型设计要点:

  • a larger receptive field is important to learn complex correlations among object classes (i.e. global context)
  • spatial detail in images is necessary to preserve object
    boundaries
  • balance speed and accuracy
Network Architecture

【语义分割】Fast-SCNN -- Fast Semantic Segmentation Network_第1张图片

【语义分割】Fast-SCNN -- Fast Semantic Segmentation Network_第2张图片

PPM是PSPNet中的一个重要模块,可融合 different-region-based context information.

【语义分割】Fast-SCNN -- Fast Semantic Segmentation Network_第3张图片

Adding few layers after the feature fusion module boosts the accuracy

Pre-training on Auxiliary Tasks

In our experiments we show that small networks do not get significant benefit from pre-training. Instead, aggressive data augmentation and more number of epochs provide similar results

Fast-SCNN在cityscapes上训练1000个epoch

Experiment

1、Evaluation on Cityscapes
【语义分割】Fast-SCNN -- Fast Semantic Segmentation Network_第4张图片
【语义分割】Fast-SCNN -- Fast Semantic Segmentation Network_第5张图片
2、Pre-training and Weakly Labeled Data
【语义分割】Fast-SCNN -- Fast Semantic Segmentation Network_第6张图片
3、Lower Input Resolution
【语义分割】Fast-SCNN -- Fast Semantic Segmentation Network_第7张图片

目前很多模型输入都为512 x 1024

你可能感兴趣的:(【语义分割】Fast-SCNN -- Fast Semantic Segmentation Network)