分类模型评价一般有以下几种方法:混淆矩阵(Confusion Matrix)、收益图(Gain Chart)、提升图(Lift Chart)、KS图(KS Chart)、接受者操作特性曲线(ROC Chart)。“分类模型评价与在R中的实现”系列中将逐个介绍。
本篇介绍最基础的混淆矩阵。
一、混淆矩阵简介
混淆矩阵将分类预测结果与实际目标进行比较,并汇总成NXN列联表(N为分类类型数)。
以二元分类为例:
Confusion Matrix
Target
Positive
Negative
Model
Positive
True Positives(TP)
False Positives(FP)
Negative
False Negatives(FN)
True Negatives(TN)
Positive Samples(P)
Negative Samples(N)
由上表可以计算的指标有: Accuracy = (TP+TN)/(P+N) Error Rate = 1 – Accuracy = (FP+FN)/(P+N) False Positive Rate = Fallout = FP/N True Positive Rate = Recall = Sensitivity = TP/P False Negative Rate = Miss = FN/P True Negative Rate = Specificity = TN/N Positive Predictive Value = Precision = TP/(TP+FP) Negative Predictive Value = TN/(TN+FN) Prediction-conditioned Fallout = FP/(TP+FP) Prediction-conditioned Miss = FN/(TN+FN) Rate of Positive Predictions = Detection Prevalence = (TP+FP)/(P+N) Rate of Negative Predictions = (TN+FN)/(P+N) Prevalence = (TP+FN)/(P+N) Detection Rate = TP/(P+N) Balanced Accuracy = (Sensitivity+Specificity)/2
是不是感觉这些货已经组合完所有的分子/分母了?没关系,其实只要知道TP和TN越高越好就好了。
二、在R中计算混淆矩阵
这次使用ROCR包中的ROCR.simple数据集,其中prediction是预测值,labels为真实值。
require(ROCR)
data(ROCR.simple)
str(ROCR.simple)
## List of 2
## $ predictions: num [1:200] 0.613 0.364 0.432 0.14 0.385 ...
## $ labels : num [1:200] 1 1 0 0 0 1 1 1 1 0 ...
1 用table()直接计算
在确定好阀值后,可以直接用table函数计算列联表,再根据之前的公式计算各个指标。假设我们认为prediciton>0.5的都预测为1,其余为0.
pred.class <- as.integer(ROCR.simple$predictions > 0.5)
print(cft <- table(pred.class, ROCR.simple$labels))
##
## pred.class 0 1
## 0 91 14
## 1 16 79
通过对混淆矩阵中数值的计算可以得到:
tp <- cft[2, 2]
tn <- cft[1, 1]
fp <- cft[2, 1]
fn <- cft[1, 2]
print(accuracy <- (tp + tn)/(tp + tn + fp + fn))
## [1] 0.85
print(sensitivity <- tp/(tp + fn))
## [1] 0.8495
print(specificity <- tn/(tn + fp))
## [1] 0.8505
2 用confusionMatrix()算
如果不想手动算,可以借助caret包中的confusionMatrix函数计算。该函数既可以用混淆矩阵的结果,也可以直接输入预测/目标两列原始数据计算上述值。只要确定好positive分类是那个,就能得出跟之前一样的结果。
require(caret)
confusionMatrix(cft, positive = "1")
confusionMatrix(pred.class, ROCR.simple$labels, positive = "1")
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 91 14
## 1 16 79
##
## Accuracy : 0.85
## 95% CI : (0.793, 0.896)
## No Information Rate : 0.535
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.699
## Mcnemar's Test P-Value : 0.855
##
## Sensitivity : 0.849
## Specificity : 0.850
## Pos Pred Value : 0.832
## Neg Pred Value : 0.867
## Prevalence : 0.465
## Detection Rate : 0.395
## Detection Prevalence : 0.475
## Balanced Accuracy : 0.850
##
## 'Positive' Class : 1
##
三、混淆矩阵的缺点
1 需要自己确定阀值
可以看到,混淆矩阵4个值的确定都依赖于最直线我们主观设定的0.5。如果只依靠混淆矩阵这种原始的方法,那么不经过繁琐的试错我们无法确认哪个阀值是最好的。
2不平衡数据鲁棒性不好
一些positive事件发生概率极小的不平衡数据集(imbalanced data),混淆矩阵可能效果不好。比如对信用卡交易是否异常做分类的情形,很可能1w笔交易中只有1笔交易是异常的。一个将将所有交易都判定为正常的分类器,准确率是99.99%。这个数字虽然很高,但是没有任何现实意义。
在之前列举的各种分类模型评价方法中,收益图(Gain Chart)、提升图(Lift Chart)、KS图(KS Chart)、接受者操作特性曲线(ROC Chart)都对混淆矩阵的缺点的有改进。
你可能感兴趣的:(R)
android系统selinux中添加新属性property
辉色投像
1.定位/android/system/sepolicy/private/property_contexts声明属性开头:persist.charge声明属性类型:u:object_r:system_prop:s0图12.定位到android/system/sepolicy/public/domain.te删除neverallow{domain-init}default_prop:property
用Python实现读取统计单词个数
程序媛了了
python 游戏 java
完整实例代码:fromcollectionsimportCounterdefpythonit():danci={}withopen("pythonit.txt","r",encoding="utf-8")asf:foriinf:words=i.strip().split()forwordinwords:ifwordnotindanci:danci[word]=1else:danci[word]+=
光盘文件系统 (iso9660) 格式解析
穷人小水滴
光盘 文件系统 iso9660 deno GNU/Linux javascript
越简单的系统,越可靠,越不容易出问题.光盘文件系统(iso9660)十分简单,只需不到200行代码,即可实现定位读取其中的文件.参考资料:https://wiki.osdev.org/ISO_9660相关文章:《光盘防水嘛?DVD+R刻录光盘泡水实验》https://blog.csdn.net/secext2022/article/details/140583910《光驱的内部结构及日常使用》ht
《跃迁》5/7-5组-橙子-张静12.16
静言物于
【便签5】【片段来源】《跃迁:成为高手的技术》第四章【R原文】一位客户咨询时抱怨:“这个我做不到。”我问他:“如果我请你现在出去裸奔,你能做到吗?”“这个我也做不到”“其实并不是做不到,而是不愿意做,或者不想承担裸奔的代价吧。你不是做不到,而是选择不去做。如果有一天你裸奔能救自己家人、孩子,也许就能做到了。”为什么要做这个区分?如果一个人经常和自己说“做不到”,他的能力范围会越来越小,会成为一个无
✔2848. 与车相交的点
程序员小小聪
力扣 leetcode
代码实现:方法一:哈希表#definefmax(a,b)((a)>(b)?(a):(b))intnumberOfPoints(int**nums,intnumsSize,int*numsColSize){inthash[101]={0};intmax=0;for(inti=0;i=x){j--;}if(i=nums[i][0]){r=r>nums[i][1]?r:nums[i][1];}else{
【加密算法基础——RSA 加密】
XWWW668899
网络 服务器 笔记 python
RSA加密RSA(Rivest-Shamir-Adleman)加密是非对称加密,一种广泛使用的公钥加密算法,主要用于安全数据传输。公钥用于加密,私钥用于解密。RSA加密算法的名称来源于其三位发明者的姓氏:R:RonRivestS:AdiShamirA:LeonardAdleman这三位计算机科学家在1977年共同提出了这一算法,并发表了相关论文。他们的工作为公钥加密的基础奠定了重要基础,使得安全通
Acwing 区间合并
Curry_Math
算法学习 算法 c++ 开发语言
区间合并主要思想:给定很多区间。若两个区间有交集,将二者合并成一个区间。具体做法:先按照区间的左端点进行排序然后遍历每个区间,根据不同的情况进行合并,有一下几种情况:第一种情况,区间不变;第二种情况,end更新为区间i的右端点;以上两种情况,可以归结为end更新为max(end,r);r为区间右端点第三种情况,将当前维护的区间加入结果,并将维护的区间更新为区间i;下面给出区间合并的板子://区间合
Android shell 常用 debug 命令
晨春计
Audio debug android linux
目录1、查看版本2、am命令3、pm命令4、dumpsys命令5、sed命令6、log定位查看APK进程号7、log定位使用场景1、查看版本1.1、Android串口终端执行getpropro.build.version.release#获取Android版本uname-a#查看linux内核版本信息uname-r#单独查看内核版本1.2、linux服务器执行lsb_release-a#查看Lin
Windows安装ciphey编码工具,附一道ciscn编码题例
im-Miclelson
CTF工具 网络安全
TA是什么一款智能化的编码分析解码工具,对于CTF中复杂性编码类题目可以快速攻破。编码自动分析解码的神器。如何安装Windows环境Python3.864位(最新的版本不兼容,32位的也不行)PIP直接安装pipinstallciphey-ihttps://pypi.mirrors.ustc.edu.cn/simple/安装后若是出现报错请根据错误代码行数找到对应文件,r修改成rb即可。使用标准语
linux简单安装gcc和gdb
chn-zgq
Linux linux ubuntu
linux安装gcc以及环境配置和gdb安装gcc-10.0添加源:sudoadd-apt-repositoryppa:ubuntu-toolchain-r/ppa更新源:sudoaptupdate下载gcc:sudoaptinstallgcc-10g++-10默认GCC版本设置为gcc-10.0:sudoupdate-alternatives--install/usr/bin/gccgcc/us
梧桐数据库(WuTongDB):数据库技术中都有哪些常见的优化器
鲁鲁517
梧桐数据库 梧桐数据库
以下是一些常见的数据库优化器:1.CBO(Cost-BasedOptimizer)应用场景:广泛应用于关系型数据库中,如Oracle、PostgreSQL、MySQL等。工作原理:通过计算不同执行计划的代价(如CPU、I/O等资源消耗),选择最低代价的执行计划。代表数据库:Oracle、PostgreSQL、MySQL。特点:CBO使用统计信息(如表大小、索引分布)来评估查询的代价。2.RBO(R
【机器人建模和控制】读书笔记
Piccab0o
机器人
机器人建模和控制——马克·斯庞A.x10=x1∙x0x^0_1=x_1\bulletx_0x10=x1∙x0,其实就是:1)x1x_1x1轴向量在O0O_0O0系下的坐标2)在x0x_0x0轴上的投影3)坐标变换矩阵的R10R_1^0R10的第一个元素B.点p在o1x1y1z1o_1x_1y_1z_1o1x1y1z1系下的坐标p1p^1p1可以表示为:p=ux1+vy1+wz1p=ux_1+vy_
Python和R均方根误差平均绝对误差算法模型
亚图跨际
Python 交叉知识 R 回归模型 误差指标 归一化均方根误差 生态状态指标 神经网络成本误差 气体排放气候模型 多项式拟合
要点回归模型误差评估指标归一化均方根误差生态状态指标神经网络成本误差计算气体排放气候算法模型Python误差指标均方根误差和平均绝对误差均方根偏差或均方根误差是两个密切相关且经常使用的度量值之一,用于衡量真实值或预测值与观测值或估计值之间的差异。估计器θ^\hat{\theta}θ^相对于估计参数θ\thetaθ的RMSD定义为均方误差的平方根:RMSD(θ^)=MSE(θ^)=E((θ^−θ
PCIe进阶之TL:Common Packet Header Fields & TLPs with Data Payloads Rules
芯芯之火,可以燎原
PCIe进阶 PCIe进阶 硬件工程 信息与通信
1TransactionLayerProtocol-PacketDefinitionTLP有四种事务类型:Memory、I/O、Configuration和Messages,两种地址格式:32bit和64bit。构成TLP时,所有标记为Reserved的字段(有时缩写为R)都必须全为0。接收者Rx必须忽略此字段中的值,PCIeSwitch必须对其进行原封不动的转发。请注意,对于某些字段,既有指定值
python下载pandas库镜像_下载pandas库
weixin_39791152
背景交代:在下载matplotlib库时,我已经将pip的下载源手动更改为清华的镜像,所以,如果有小伙伴在下载库遇到问题,如timeout,请先将下载源改为国内镜像,具体操作见我的另一篇文章:今天的主题是安装pandas库~首先,按田字格+R,打开cmd,输入:pipinstallpandas嗯,不出所料地报错了……主要原因:pip._vendor.urllib3.exceptions.ReadT
FlexibleBI系统是现代制造企业提升生产质量和效率的重要工具
三坐标CMM质量数据系统
制造
SPC(统计过程控制)系统是现代制造企业提升生产质量和效率的重要工具。我们的SPC系统通过一键生成全面的SPC分析报告,帮助企业快速、精准地完成质量分析,并大大减少了手动处理数据的复杂性。FlexibleBI实时更新的控制图在生产过程中,控制图可以实时自动更新,确保企业能够随时掌握生产状态,及时发现并处理潜在问题。系统支持多种标准SPC控制图,如X-bar、R、P等图表,全面覆盖所有常见生产场景。
ResNet的半监督和半弱监督模型
Valar_Morghulis
Billion-scalesemi-supervisedlearningforimageclassificationhttps://arxiv.org/pdf/1905.00546.pdfhttps://github.com/facebookresearch/semi-supervised-ImageNet1K-models/权重在timm中也有:https://hub.fastgit.org/r
node初
奶瓶SAMA
www.nodejs.org下载nodejs的安装文件,然后就直接下一步,下一步,下一步傻瓜式安装(打开命令符widow+r输入cmd)node-v查单当前node的版本号安装nodejs时,会自动安装npm包管理工具npm-v查看npm的版本可以直接在黑窗口中输入node然后点击回车以后,就可以输入javascripnt的代码了既然在浏览器鼠标右键中console和在黑窗口中输入node点击回车
ros2中使用launch.xml启动时,怎么在命令行里设置参数,或者加载参数文件(params.yaml)
code .
Autoware 自动驾驶 ROS2 xml Ros2 自动驾驶 机器人
在ROS2中使用launch.xml启动时,可以通过命令行设置参数或加载参数文件(如params.yaml)。以下是具体的方法:1.在命令行中设置参数你可以在运行ros2launch命令时直接设置参数,使用key:=value的语法。例如:ros2launchparam_name:=param_value例如,如果你有一个参数background_r,你可以这样设置:ros2launchmy_pa
【机器学习与R语言】1-机器学习简介
苹果酱0567
面试题汇总与解析 java 中间件 开发语言 spring boot 后端
1.基本概念机器学习:发明算法将数据转化为智能行为数据挖掘VS机器学习:前者侧重寻找有价值的信息,后者侧重执行已知的任务。后者是前者的先期准备过程:数据——>抽象化——>一般化。或者:收集数据——推理数据——归纳数据——发现规律抽象化:训练:用一个特定模型来拟合数据集的过程用方程来拟合观测的数据:观测现象——数据呈现——模型建立。通过不同的格式来把信息概念化一般化:一般化:将抽象化的知识转换成可用
商业预测 初识R
hongyanwin
r语言 预测
1.打开帮助文档首页,查阅其中的“IntroductiontoR”helpRhelp2.安装vcd包install.packages("vcd")3.列出此包中可用的函数和数据集ls("package:vcd")/data(package="vcd")4.载入包并阅读数据集Arthritis的描述library("v.d")/?Arthritis5.显示数据集Arthritis的内容查看数据集结构
【NLP5-RNN模型、LSTM模型和GRU模型】
一蓑烟雨紫洛
nlp rnn lstm gru nlp
RNN模型、LSTM模型和GRU模型1、什么是RNN模型RNN(RecurrentNeuralNetwork)中文称为循环神经网络,它一般以序列数据为输入,通过网络内部的结构设计有效捕捉序列之间的关系特征,一般也是以序列形式进行输出RNN的循环机制使模型隐层上一时间步产生的结果,能够作为当下时间步输入的一部分(当下时间步的输入除了正常的输入外还包括上一步的隐层输出)对当下时间步的输出产生影响2、R
2024上半年软考系统架构设计师-综合知识选择题及答案
不对法
系统架构
1.操作系统先来先服务调度算法2.操作系统多道程序设计,利用率3.操作系统状态流转错误的,执行态到运行态4.数据库2NF每一个非主属性完全依赖主键5.数据库笛卡尔积m*n6.数据库不属于事务的特点,并发性7.数据库交集表达式R-(R-S)8.数据库反规范化属于逻辑设计9.网络没有加密功能,物理层10.网络二层交换机数据,数据链路层11.知识产权专利法是否属于民法12.知识产权商标不属于,其他几个是
python 判断 ‘NoneType’的方法
cuisidong1997
文本转换 python
的错误时说明需要进行判断,而对‘NoneType’进行判断时直接使用‘isNone’即可,如下:iftextisNone:print('testis’+None)else:print('testisnot’+None)a=re.match(r’主叫号码(.*)客户姓名’,r’2、主叫号码:15558191990;3、客户姓名:韩东远;')print(type(a))ifaisNone:print(
R 数据可视化 —— 韦恩图
名本无名
前言对于数据集之间交叠关系的可视化,通常想到的是绘制韦恩图。韦恩图是一种关系型图表,通过图形之间的重叠来反映数据集之间的相交关系。下面,我们来简单介绍一下如何绘制韦恩图韦恩图绘制韦恩图的包有很多,比如gplots包的venn()函数、limma包的vennDiagram()函数、venneuler包的venneuler()函数。但是这些包绘制出来的图像效果都不是很好,所以我们使用比较成熟的包Ven
Mac清倒废纸篓提示“voicetrigger“在使用中
ReddingtonLin
Mac Mac
删除Mac下的user以后,清倒废纸篓,提示“voicetrigger”在使用中。解决办法:重启Mac,开机的时候按住Cmd+R进入Recovery模式选择语言-简体中文从工具菜单中启动终端,输入密码。输入csrutildisable命令,即可关闭SIP服务。重启电脑。(正常重启即可,不用按住Cmd+R进入Recovery模式)再尝试清空废纸篓。如果还不行,就尝试用命令行删除。处理好后,再开启SI
大数据新视界 --大数据大厂之数据挖掘入门:用 R 语言开启数据宝藏的探索之旅
青云交
大数据新视界 数据库 大数据 数据挖掘 R 语言 算法案例 未来趋势 应用场景 学习建议 大数据新视界
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:Ja
python做窗口软件界面绑定py程序_PyCharm GUI界面开发和exe文件生成的实现
weixin_39948442
一、安装Python二、安装PyQt5推荐使用pip安装:win+R调出cmd命令窗口pipinstallPyQt5等待片刻,继续安装PyQt5-toolspipinstallPyQt5-tools如果直接pip不成功的话,建议在python库这个网站上搜索相关库,下载相应的.whl文件,然后用以下方法进行安装:①pipwhl文件所在路径whl文件名②在cmd命令窗口先执行cdwhl文件所在路径到
02 Java-Lambda-Java 8 自带的函数接口
王小杰at2019
Java8自带的函数接口我们使用lambda在处理自己定义的业务时,需要自定义函数式接口,其实java8已经内置了常用的接口,这样我们在用的时候不要需要自己定义接口,根据需要选择符合自己业务逻辑的接口接口|输入参数|返回值类型|说明---|---|---|---|---Predicate|T|boolean|断言Consumer|T|/|消费一个数据|Function|T|R|输入一个T输出一个R
10.web应用体系以及windows网络常见操作应用
XXX-17
软件测试 软件测试
一、Dos命令1.启动方式:win+R,输入cmd2.切换盘符/路径:盘符名称+:(C:)cd目录(cdB111)(目录名按table键自动补全)3.查看目录:dirdir/p分页展示目录及文件dir/b展示文件名称4.创建文件夹:md文件夹名(mdt1)5.删除文件夹:rd文件夹名(rdt1)删除文件:del文件名(del222.txt)6.复制文件:copy复制文件目标路径(copymaste
对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
C语言的分支——Object-C程序设计阅读有感
darkblue086
apple c 框架 cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
去除浏览器对表单值的记忆
周凡杨
html 记忆 autocomplete form 浏览
&n
java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
Nginx安装部署
510888780
nginx linux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
java servelet异步处理请求
墙头上一根草
java 异步返回 servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
为Mysql创建最优的索引
annan211
mysql 索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
日期函数
百合不是茶
oracle sql 日期函数 查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
线程优先级
bijian1013
java thread 多线程 java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
适配器模式和代理模式的区别
bijian1013
java 设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
oracle大数据表复制备份个人经验
bitcarter
oracle 大表备份 大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
学习编程的一点感想
Cb123456
编程 感想 Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
[能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
SpringMVC-ajax返回值乱码解决方案
dashuaifu
Ajax springMVC response 中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
[应用结构]应用
dcj3sjt126com
PHP yii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
assertThat用法
eksliang
JUnit assertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
android点滴2
gundumw100
应用服务器 android 网络应用 OS HTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
超简洁的CSS下拉菜单
ini
html Web 工作 html5 css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
kafka consumer防止数据丢失
kane_xie
kafka offset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
@Repository、@Service、@Controller 和 @Component
mhtbbx
DAO spring bean prototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
mongodb replica set(副本集)设置步骤
tcrct
java mongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分