Scikit-Learn模块学习笔记——数据集模块datasets

scikit-learn 的 datasets 模块包含测试数据相关函数,主要包括三类:

  • datasets.load_*():获取小规模数据集。数据包含在 datasets 里
  • datasets.fetch_*():获取大规模数据集。需要从网络上下载,函数的第一个参数是 data_home,表示数据集下载的目录,默认是 ~/scikit_learn_data/。要修改默认目录,可以修改环境变量SCIKIT_LEARN_DATA。数据集目录可以通过datasets.get_data_home()获取。clear_data_home(data_home=None)删除所有下载数据。
  • datasets.make_*():本地生成数据集。

数据集格式

  • tuple(X, y)
    本地生成数据函数 make_*load_svmlight_* 返回的数据是 tuple(X, y) 格式
  • Bunch
    load_*fetch_* 函数返回的数据类型是 datasets.base.Bunch,本质上是一个 dict,它的键值对可用通过对象的属性方式访问。主要包含以下属性:

    • data:特征数据数组,是 n_samples * n_features 的二维 numpy.ndarray 数组
    • target:标签数组,是 n_samples 的一维 numpy.ndarray 数组
    • DESCR:数据描述
    • feature_names:特征名
    • target_names:标签名

获取小数据集

  • load_boston():
    房屋特征-房价,用于regression
  • load_diabetes():
    糖尿病数据,用于 regression
  • load_linnerud():
    Linnerud数据集,有多个标签,用于 multilabel regression
  • load_iris():
    鸢尾花特征和类别,用于classification
  • load_digits([n_class]):
    手写数字识别
  • load_sample_images():
    载入图片数据集,共两张图
  • load_sample_image(name):
    载入图片数据集中的一张图
  • load_files(container_path, description=None, categories=None, load_content=True, shuffle=True, encoding=None, decode_error='strict', random_state=0):
    从本地目录获取文本数据,并根据二级目录做分类

获取大数据集

  • load_mlcomp(name_or_id, set_='raw', mlcomp_root=None, **kwargs):
    从 http://mlcomp.org/ 上下载数据集
  • fetch_california_housing(data_home=None, download_if_missing=True)
  • fetch_olivetti_faces(data_home=None, shuffle=False, random_state=0, download_if_missing=True):
    Olivetti 脸部图片数据集
  • fetch_lfw_people(data_home=None, funneled=True, resize=0.5, min_faces_per_person=0, color=False, slice_=(slice(70, 195, None), slice(78, 172, None)), download_if_missing=True):
  • fetch_lfw_pairs(subset='train', data_home=None, funneled=True, resize=0.5, color=False, slice_=(slice(70, 195, None), slice(78, 172, None)), download_if_missing=True):
    Labeled Faces in the Wild (LFW) 数据集,参考 LFW
  • fetch_20newsgroups(data_home=None, subset='train', categories=None, shuffle=True, random_state=42, remove=(), download_if_missing=True)
  • fetch_20newsgroups_vectorized(subset='train', remove=(), data_home=None):
    新闻分类数据集,数据集包含 ‘train’ 部分和 ‘test’ 部分。
  • fetch_rcv1(data_home=None, subset='all', download_if_missing=True, random_state=None, shuffle=False):
    路透社新闻语聊数据集
  • fetch_mldata(dataname, target_name='label', data_name='data', transpose_data=True, data_home=None):
    从 mldata.org 中下载数据集。参考 PASCAL network
  • mldata_filename(dataname):
    将 mldata 的数据集名转换为下载的数据文件名
  • fetch_covtype(data_home=None, download_if_missing=True, random_state=None, shuffle=False)
    Forest covertypes 数据集

本地生成数据

回归(regression)

  • make_regression(n_samples=100, n_features=100, n_informative=10, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None)
  • make_sparse_uncorrelated(n_samples=100, n_features=10, random_state=None)
  • make_friedman1(n_samples=100, n_features=10, noise=0.0, random_state=None)
  • make_friedman2(n_samples=100, noise=0.0, random_state=None)
  • make_friedman3(n_samples=100, noise=0.0, random_state=None)

分类(classification)

单标签

  • make_classification(n_samples=100, n_features=20, n_informative=2, n_redundant=2, n_repeated=0, n_classes=2, n_clusters_per_class=2, weights=None, flip_y=0.01, class_sep=1.0, hypercube=True, shift=0.0, scale=1.0, shuffle=True, random_state=None):
    生成 classification 数据集。包含所有的设置,可以包含噪声,偏斜的数据集
  • make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None):
    生成 classification 数据集。数据服从高斯分布
    centers 可以是整数,表示中心点个数,或者用列表给出每个中心点的特征值
    cluster_std 可以是浮点数或浮点数列表
    random_state 可以是整数,表示随机起始 seed,或者 RandomState 对象,默认使用 np.random
  • make_gaussian_quantiles(mean=None, cov=1.0, n_samples=100, n_features=2, n_classes=3, shuffle=True, random_state=None):
  • make_hastie_10_2(n_samples=12000, random_state=None):
  • make_circles(n_samples=100, shuffle=True, noise=None, random_state=None, factor=0.8):
  • make_moons(n_samples=100, shuffle=True, noise=None, random_state=None):

    多标签

  • make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=True, sparse=False, return_indicator='dense', return_distributions=False, random_state=None):
    生成 multilabel classification 数据集。

    双聚类(bicluster)

  • make_biclusters(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None):
  • make_checkerboard(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None):

流形学习(manifold learning)

  • make_s_curve(n_samples=100, noise=0.0, random_state=None)
  • make_swiss_roll(n_samples=100, noise=0.0, random_state=None)、

可降维(decomposition)数据

  • make_low_rank_matrix(n_samples=100, n_features=100, effective_rank=10, tail_strength=0.5, random_state=None)
  • make_sparse_coded_signal(n_samples, n_components, n_features, n_nonzero_coefs, random_state=None)
  • make_spd_matrix(n_dim, random_state=None)
  • make_sparse_spd_matrix(dim=1, alpha=0.95, norm_diag=False, smallest_coef=0.1, largest_coef=0.9, random_state=None)

处理 svmlight / libsvm 格式数据

提供 svmlight / libsvm 格式数据的导入或导出。

  • load_svmlight_file(f, n_features=None, dtype=numpy.float64, multilabel=False, zero_based='auto', query_id=False):
    返回 (X, y, [query_id]),其中 X 是 scipy.sparse matrix,y 是 numpy.ndarray
  • load_svmlight_files(files, n_features=None, dtype=numpy.float64, multilabel=False, zero_based='auto', query_id=False)
  • dump_svmlight_file(X, y, f, zero_based=True, comment=None, query_id=None, multilabel=False)

其他数据集网站

UCI Machine Learning Repository:http://archive.ics.uci.edu/ml/datasets.html
UCI KDD:http://kdd.ics.uci.edu/summary.data.type.html
Kaggle:https://www.kaggle.com/datasets

参考

官方datasets包文档:http://scikit-learn.org/stable/datasets/index.html
API列表:http://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets

转载于:https://www.cnblogs.com/zhuyuanhao/p/5383628.html

你可能感兴趣的:(Scikit-Learn模块学习笔记——数据集模块datasets)