一、利用直方图的方式进行批量的图片缺陷检测(方法简单)
灰度化的作用是因为后面的直方图比较需要以像素256为基准进行相关性比较
img = cv2.imread("0.bmp") #原图灰度转换 gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) #循环要检测的图,均灰度化 for i in range(1, 6): t1=cv2.cvtColor(cv2.imread(str(i)+".bmp"),cv2.COLOR_RGB2GRAY)
calcHist参数讲解
#直方图计算的函数,反应灰度值的分布情况 hist = cv2.calcHist([gray], [0], None, [256], [0.0,255.0]) h1 = cv2.calcHist([t1], [0], None, [256], [0.0,255.0])
cv2.compareHist(H1, H2, method)
其中:
#相关性计算,采用相关系数的方式 result = cv2.compareHist(hist,h1,method=cv2.HISTCMP_CORREL)
相关系数含义参考表
im = Image.open(str(i) + ".bmp") draw = ImageDraw.Draw(im) fnt = ImageFont.truetype(r'C:\Windows\Fonts\simsun.ttc', 30) #这里视作》=0.9认为相似,即合格 if result >=0.9: draw.text((5, 10), u'合格', fill='red', font=fnt) else: draw.text((5, 10), u'不合格', fill='red', font=fnt) im.show("result" +str(i) + ".png")
# -*- coding: UTF-8 -*- import cv2 from PIL import Image, ImageDraw, ImageFont img = cv2.imread("0.bmp") #原图灰度转换 gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) for i in range(1, 6): t1=cv2.cvtColor(cv2.imread(str(i)+".bmp"),cv2.COLOR_RGB2GRAY) #直方图计算的函数,反应灰度值的分布情况 hist = cv2.calcHist([gray], [0], None, [256], [0.0,255.0]) h1 = cv2.calcHist([t1], [0], None, [256], [0.0,255.0]) #相关性计算,采用相关系数的方式 result = cv2.compareHist(hist,h1,method=cv2.HISTCMP_CORREL) im = Image.open(str(i) + ".bmp") draw = ImageDraw.Draw(im) fnt = ImageFont.truetype(r'C:\Windows\Fonts\simsun.ttc', 30) #这里视作》=0.9认为相似,即合格 if result >=0.9: draw.text((5, 10), u'合格', fill='red', font=fnt) else: draw.text((5, 10), u'不合格', fill='red', font=fnt) im.show("result" +str(i) + ".png")
源码加群:850591259