grpc练习

先写 .gropo文件,传输数据

python -m grpc_tools.protoc -I.  --python_out=. --grpc_python_out=.reco.proto  
  • -I 需要导入的proto文件从哪个目录中寻找 (-I. 表示从当前目录中查找)
    ---python_out proto文件中定义的message 字段生成的python代码文件保存到哪个目录
  • --grpc_python_out proto文件中定义的service 字段生成的python代码文件保存到哪个目录

在这个文件夹右击 updown把那两个文件下载下来

写server.py文件

  • 带_grpc的文件能找到类名
  • 方法名就是双方定义的方法名
  • 不带_grpc的文件 . (带_grpc的文件下面)xxxResponse来创建传输数据的对象

写client.py文件

运行server文件

python server.py

运行client文件

python client.py

以下是实例代码

# reco.proto

syntax = "proto3";

message UserRequest {
    string user_id=1;
    int32 channel_id=2;
    int32 article_num=3;
    int64 time_stamp=4;
}

message Track {
    string click=1;
    string collect=2;
    string share=3;
    string read=4;
}

message Article {
    int64 article_id=1;
    Track track=2;
}

message ArticleResponse {
    string exposure=1;
    int64 time_stamp=2;
    repeated Article recommends=3;
}

service UserRecommend {
    rpc user_recommend(UserRequest) returns(ArticleResponse) {}
}
# reco_pb2_grpc.py
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
import grpc

import reco_pb2 as reco__pb2


class UserRecommendStub(object):
  # missing associated documentation comment in .proto file
  pass

  def __init__(self, channel):
    """Constructor.

    Args:
      channel: A grpc.Channel.
    """
    self.user_recommend = channel.unary_unary(
        '/UserRecommend/user_recommend',
        request_serializer=reco__pb2.UserRequest.SerializeToString,
        response_deserializer=reco__pb2.ArticleResponse.FromString,
        )


class UserRecommendServicer(object):
  # missing associated documentation comment in .proto file
  pass

  def user_recommend(self, request, context):
    # missing associated documentation comment in .proto file
    pass
    context.set_code(grpc.StatusCode.UNIMPLEMENTED)
    context.set_details('Method not implemented!')
    raise NotImplementedError('Method not implemented!')


def add_UserRecommendServicer_to_server(servicer, server):
  rpc_method_handlers = {
      'user_recommend': grpc.unary_unary_rpc_method_handler(
          servicer.user_recommend,
          request_deserializer=reco__pb2.UserRequest.FromString,
          response_serializer=reco__pb2.ArticleResponse.SerializeToString,
      ),
  }
  generic_handler = grpc.method_handlers_generic_handler(
      'UserRecommend', rpc_method_handlers)
  server.add_generic_rpc_handlers((generic_handler,))

# client.py

import grpc
import reco_pb2_grpc
import reco_pb2
import time


def run():
    # 连接rpc服务器得到与rpc连接的对象
    with grpc.insecure_channel('127.0.0.1:8888') as conn:
        # 创建进行rpc调用的工具对象
        stub = reco_pb2_grpc.UserRecommendStub(conn)

        # 通过工具对象进行rpc函数调用
        req = reco_pb2.UserRequest()
        req.user_id = '1'
        req.channel_id = 12
        req.article_num = 10
        req.time_stamp = round(time.time() * 1000)

        ret = stub.user_recommend(req)
        # ret -> ArticleResponse 对象
        print(ret)


if __name__ == '__main__':
    run()

# server.py

import grpc
from concurrent.futures import ThreadPoolExecutor
import time
import reco_pb2_grpc
import reco_pb2


# 补全被调用的代码
class UserRecommendServicer(reco_pb2_grpc.UserRecommendServicer):
    # 在接口定义的同名方法中补全,被调用时应该执行的逻辑
    def user_recommend(self, request, context):
        # request是调用的请求数据对象
        user_id = request.user_id
        channel_id = request.channel_id
        article_num = request.article_num
        time_stamp = request.time_stamp

        response = reco_pb2.ArticleResponse()
        response.exposure = 'exposure param'
        response.time_stamp = round(time.time() * 1000)
        recommends = []
        for i in range(article_num):
            article = reco_pb2.Article()
            article.track.click = 'click param {}'.format(i + 1)
            article.track.collect = 'collect param {}'.format(i + 1)
            article.track.share = 'share param {}'.format(i + 1)
            article.track.read = 'read param {}'.format(i + 1)
            article.article_id = i + 1
            recommends.append(article)
        response.recommends.extend(recommends)

        # 最终要返回一个调用结果
        return response


# 编写rpc服务器运行代码
def serve():
    # 创建rpc服务器对象
    server = grpc.server(ThreadPoolExecutor(max_workers=20))

    # 为rpc服务器 注册能够对外提供的代码
    reco_pb2_grpc.add_UserRecommendServicer_to_server(UserRecommendServicer(), server)

    # 绑定rpc IP地址和端口号
    server.add_insecure_port('127.0.0.1:8888')

    # 启动服务器
    server.start()  # 非阻塞

    # 为了防止程序因为非阻塞退出,手动阻塞
    while True:
        time.sleep(10)


if __name__ == '__main__':
    serve()

你可能感兴趣的:(grpc)