1、code
import numpy as np
import matplotlib.pyplot as plt
import scipy.io
import math
import sklearn
import sklearn.datasets
import opt_utils #参见数据包或者在本文底部copy
import testCase #参见数据包或者在本文底部copy
#%matplotlib inline #如果你用的是Jupyter Notebook请取消注释
plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
def update_parameters_with_gd(parameters, grads, learning_rate):
L = len(parameters) // 2
for l in range(L):
parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * grads["dW" + str(l + 1)]
parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * grads["db" + str(l + 1)]
return parameters
def random_mini_batches(X, Y, mini_batch_size = 64, seed = 0):
np.random.seed(seed)
m = Y.shape[1]
mini_batches = [ ]
#permute
permutation = list(np.random.permutation(m))
shuffled_X = X[:,permutation] #np.array 的切片特性
shuffled_Y = Y[:,permutation].reshape(1,m )
#cut
num_complete_minibatches = m // mini_batch_size
for k in range(num_complete_minibatches):
mini_batch_X = shuffled_X[:, k * mini_batch_size:(k+1)*mini_batch_size]
mini_batch_Y = shuffled_Y[:, k * mini_batch_size:(k+1)*mini_batch_size]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
if m % mini_batch_size != 0:
mini_batch_X[:,mini_batch_size*num_complete_minibatches:]
mini_batch_Y[:,mini_batch_size*num_complete_minibatches:]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
return mini_batches
def initialize_velocity(parameters):
L = len(parameters) // 2
v = { }
for l in range(L):
v["dW" + str(l + 1)] = np.zeros_like(parameters["W" + str(l + 1)])
v["db" + str(l + 1)] = np.zeros_like(parameters["b" + str(l + 1)])
return v
def update_parameters_with_momentum(parameters, grads, v, beta, learning_rate):
update_parameters_with_momentum
L = len(parameters) // 2
for l in range(L):
update_parameters_with_momentum
v["dW" + str(l+1)] = beta * v["dW" + str(l+1)] + (1 - beta) * grads["dW" + str(l+1)]
v["db" + str(l+1)] = beta * v["db" + str(l+1)] + (1 - beta) * grads["db"+ str(l+1)]
parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate*v["dW" + str(l+1)]
parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate*v["db" + str(l+1)]
return parameters,v
def initialize_adam(parameters):
L = len(parameters) //2
v = { }
s = { }
for l in range(L):
v["dW" + str(l+1)] = np.zeros_like(parameters["W" + str(l+1)])
v["db" + str(l+1)] = np.zeros_like(parameters["b" + str(l+1)])
s["dW" + str(l+1)] = np.zeros_like(parameters["W" + str(l+1)])
s["db" + str(l+1)] = np.zeros_like(parameters["b" + str(l+1)])
return v,s
def update_parameters_with_adam(parameters, grads, v, s, t, learning_rate=0.01, beta1 = 0.9,beta2= 0.999, epsilon=1e-8):
L = len(parameters) // 2
v_corrected = { }
s_corrected = { }
for l in range(L):
v["dW" + str(l+1)] = beta1*v["dW" + str(l+1)] + (1-beta1) * grads["dW"+ str(l+1)]
v["db" + str(l+1)] = beta1*v["db" + str(l+1)] + (1-beta1) * grads["db" + str(l+1)]
v_corrected["dW" + str(l+1)] = v["dW" + str(l+1)] / (1-np.power(beta1,t))
v_corrected["db" + str(l+1)] = v["db" + str(l+1)] / (1-np.power(beta1,t))
s["dW" + str(l+1)] = beta2*s["dW"+str(l+1)] +(1-beta2) * np.power(grads["dW" + str(l+1)],2)
s["db" + str(l+1)] = beta2*s["db"+str(l+1)] +(1-beta2) * np.power(grads["db" + str(l+1)],2)
s_corrected["dW" + str(l+1)] = s["dW" + str(l+1)] / (1-np.power(beta2,t))
s_corrected["db" + str(l+1)] = s["db" + str(l+1)] / (1-np.power(beta2,t))
assert(parameters["b1"].shape == (5,1))
parameters["W" + str(l+1)] = parameters["W" +str(l+1)] - learning_rate*(v_corrected["dW"+str(l+1)]/np.sqrt(s_corrected["dW"+str(l+1)] + epsilon))
parameters["b" + str(l+1)] = parameters["b" +str(l+1)] - learning_rate*(v_corrected["db"+str(l+1)]/np.sqrt(s_corrected["db"+str(l+1)] + epsilon))
assert(parameters["b1"].shape == (5,1))
return parameters, v, s
def model(X, Y, layer_dims, optimizer, learning_rate = 0.0007,
mini_batch_size = 64, beta = 0.9,beta1 = 0.9, beta2 = 0.999,
epsilon = 1e-8, num_epochs = 10000, print_cost = True, is_plot = True):
L = len(layer_dims)
costs = []
t = 0
seed = 10
parameters = opt_utils.initialize_parameters(layer_dims)
if optimizer == "gd":
pass
elif optimizer == "momentum":
v = initialize_velocity(parameters)
elif optimizer == "adam":
v,s = initialize_adam(parameters)
assert(parameters["b1"].shape == (5,1))
else:
print("Error")
exit()
assert(parameters["b1"].shape == (5,1))
for i in range(num_epochs):
seed = seed + 1
assert(parameters["b1"].shape == (5,1))
mini_batches = random_mini_batches(X, Y, mini_batch_size, seed)
assert(parameters["b1"].shape == (5,1))
for mini_batch in mini_batches:
assert(parameters["b1"].shape == (5,1))
(mini_batch_X, mini_batch_Y) = mini_batch
assert(parameters["b1"].shape == (5,1))
AL, cache = opt_utils.forward_propagation(mini_batch_X, parameters)
assert(parameters["b1"].shape == (5,1))
cost = opt_utils.compute_cost(AL, mini_batch_Y)
assert(parameters["b1"].shape == (5,1))
grads = opt_utils.backward_propagation(mini_batch_X, mini_batch_Y, cache)
assert(parameters["b1"].shape == (5,1))
if optimizer == "gd":
parameters = update_parameters_with_gd(parameters, grads, learning_rate)
elif optimizer == "momentum":
parameters,v = update_parameters_with_momentum(parameters, grads, v, beta, learning_rate)
elif optimizer == "adam":
t = t + 1
parameters,v,s == update_parameters_with_adam(parameters,grads, v, s, t, learning_rate, beta1, beta2, epsilon)
assert(parameters["b1"].shape == (5,1))
if i % 100 == 0:
costs.append(cost)
if print_cost and i % 1000 == 0:
print("第 %s 次迭代,cost = %s:"%(str(i), str(cost)))
if is_plot:
plt.plot(costs)
plt.xlabel("epochs(per 100)")
plt.ylabel("cost")
plt.title("learning_rate = " + str(learning_rate))
plt.show()
return parameters
2、 unit_test
from optimize_algorithm import *
from testCase import *
def line(s):
print("="*10 + s + "="*10)
"""
line("test for update_parameters_with_gd")
parameters, grads, learning_rate = update_parameters_with_gd_test_case()
parameters = update_parameters_with_gd(parameters, grads, learning_rate)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
line("test for random_mini_batches")
X_asses, Y_asses, mini_batch_size = random_mini_batches_test_case()
mini_batches = random_mini_batches(X_asses, Y_asses, mini_batch_size)
print("第1个mini_batch_X 的维度为:",mini_batches[0][0].shape)
print("第1个mini_batch_Y 的维度为:",mini_batches[0][1].shape)
print("第2个mini_batch_X 的维度为:",mini_batches[1][0].shape)
print("第2个mini_batch_Y 的维度为:",mini_batches[1][1].shape)
print("第3个mini_batch_X 的维度为:",mini_batches[2][0].shape)
print("第3个mini_batch_Y 的维度为:",mini_batches[2][1].shape)
line("test for initialize_velocity")
parameters = initialize_velocity_test_case()
v = initialize_velocity(parameters)
print('v["dW1"] = ' + str(v["dW1"]))
print('v["db1"] = ' + str(v["db1"]))
print('v["dW2"] = ' + str(v["dW2"]))
print('v["db2"] = ' + str(v["db2"]))
line("test for update_parameters_with_momentum")
parameters, grads, v = update_parameters_with_momentum_test_case()
parameters, v = update_parameters_with_momentum(parameters, grads, v, beta = 0.9, learning_rate= 0.01)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
print('v["dW1"] = ' + str(v["dW1"]))
print('v["db1"] = ' + str(v["db1"]))
print('v["dW2"] = ' + str(v["dW2"]))
print('v["db2"] = ' + str(v["db2"]))
print('g["dW1"] = ' + str(grads["dW1"]))
print('g["db1"] = ' + str(grads["db1"]))
print('g["dW2"] = ' + str(grads["dW2"]))
print('g["db2"] = ' + str(grads["db2"]))
line("test for initialize_adam")
parameters = initialize_adam_test_case()
v,s = initialize_adam(parameters)
print('v["dW1"] = ' + str(v["dW1"]))
print('v["db1"] = ' + str(v["db1"]))
print('v["dW2"] = ' + str(v["dW2"]))
print('v["db2"] = ' + str(v["db2"]))
print('s["dW1"] = ' + str(s["dW1"]))
print('s["db1"] = ' + str(s["db1"]))
print('s["dW2"] = ' + str(s["dW2"]))
print('s["db2"] = ' + str(s["db2"]))
line("test for update_parameters_with_adam")
parameters,grads, v,s = update_parameters_with_adam_test_case()
parameters,v,s = update_parameters_with_adam(parameters,grads,v,s,t=2)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
print('v["dW1"] = ' + str(v["dW1"]))
print('v["db1"] = ' + str(v["db1"]))
print('v["dW2"] = ' + str(v["dW2"]))
print('v["db2"] = ' + str(v["db2"]))
print('s["dW1"] = ' + str(s["dW1"]))
print('s["db1"] = ' + str(s["db1"]))
print('s["dW2"] = ' + str(s["dW2"]))
print('s["db2"] = ' + str(s["db2"]))
train_X, train_Y = opt_utils.load_dataset(is_plot = True)
layer_dims = [train_X.shape[0], 5, 2, 1]
parameters = model(train_X, train_Y, layer_dims, optimizer = "adam", is_plot = True)
prediction = opt_utils.predict(train_X, train_Y, parameters)
plt.title("Model with gradient descent optimization")
axes = plt.gca()
axes.set_xlim([-1.5, 2.5])
axes.set_ylim([-1, 1.5])
opt_utils.plot_decision_boundary(lambda x :opt_utils.predict_dec(parameters, x.T), train_X, train_Y)
"""