SUNTANS 及 FVCOM 对流扩散方程求解简介[TBC]

最近接到一个任务,就是解决FVCOM中对流扩散计算不守衡问题。导师认为是其求解时候水平和垂向计算分开求解所导致的,目前我也没搞清到底有什么问题,反正就是让把SUNTANS的对流扩散计算挪到FVCOM中,下面就把 SUNTANS 和 FVCOM 数值求解的过程贴出来,备忘

SUNTANS模型求解过程

SUNTANS模型手册:http://web.stanford.edu/group/suntans/cgi-bin/documentation/user_guide/user_guide.html

介绍文献:《An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator》

代码所谓研究讨论之用这里只公布部分:

 

  1 /*
  2  * File: scalars.c
  3  * Author: Oliver B. Fringer
  4  * Institution: Stanford University
  5  * ----------------------------------------
  6  * This file contains the scalar transport function.
  7  *
  8  * Copyright (C) 2005-2006 The Board of Trustees of the Leland Stanford Junior 
  9  * University. All Rights Reserved.
 10  *
 11  */
 12 #include "scalars.h"
 13 #include "util.h"
 14 #include "tvd.h"
 15 #include "initialization.h"
 16 
 17 #define SMALL_CONSISTENCY 1e-5
 18 
 19 REAL smin_value, smax_value;
 20 
 21 /*
 22  * Function: UpdateScalars
 23  * Usage: UpdateScalars(grid,phys,prop,wnew,scalar,Cn,kappa,kappaH,kappa_tv,theta);
 24  * ---------------------------------------------------------------------------
 25  * Update the scalar quantity stored in the array denoted by scal using the
 26  * theta method for vertical advection and vertical diffusion and Adams-Bashforth
 27  * for horizontal advection and diffusion.
 28  *
 29  * Cn must store the AB terms from time step n-1 for this scalar
 30  * kappa denotes the vertical scalar diffusivity
 31  * kappaH denotes the horizontal scalar diffusivity
 32  * kappa_tv denotes the vertical turbulent scalar diffusivity
 33  *
 34  */
 35 void UpdateScalars(gridT *grid, physT *phys, propT *prop, REAL **wnew, REAL **scal, REAL **boundary_scal, REAL **Cn, 
 36     REAL kappa, REAL kappaH, REAL **kappa_tv, REAL theta,
 37     REAL **src1, REAL **src2, REAL *Ftop, REAL *Fbot, int alpha_top, int alpha_bot,
 38     MPI_Comm comm, int myproc, int checkflag, int TVDscheme) 
 39 {
 40   int i, iptr, j, jptr, ib, k, nf, ktop;
 41   int Nc=grid->Nc, normal, nc1, nc2, ne;
 42   REAL df, dg, Ac, dt=prop->dt, fab, *a, *b, *c, *d, *ap, *am, *bd, *uflux, dznew, mass, *sp, *temp;
 43   REAL smin, smax, div_local, div_da;
 44   int k1, k2, kmin, imin, kmax, imax, mincount, maxcount, allmincount, allmaxcount, flag;
 45 
 46   prop->TVD = TVDscheme;
 47   // These are used mostly debugging to turn on/off vertical and horizontal TVD.
 48   prop->horiTVD = 1;
 49   prop->vertTVD = 1;
 50 
 51   ap = phys->ap;
 52   am = phys->am;
 53   bd = phys->bp;
 54   temp = phys->bm;
 55   a = phys->a;
 56   b = phys->b;
 57   c = phys->c;
 58   d = phys->d;
 59 
 60   // Never use AB2
 61   if(1) {
 62     fab=1;
 63     for(i=0;iNc;i++)
 64       for(k=0;kNk[i];k++)
 65         Cn[i][k]=0;
 66   } else
 67     fab=1.5;
 68 
 69   for(i=0;i) 
 70     for(k=0;kNk[i];k++) 
 71       phys->stmp[i][k]=scal[i][k];
 72 
 73   // Add on boundary fluxes, using stmp2 as the temporary storage
 74   // variable
 75   //for(iptr=grid->celldist[0];iptrcelldist[1];iptr++) {
 76   for(iptr=grid->celldist[0];iptrcelldist[2];iptr++) {
 77     i = grid->cellp[iptr];
 78 
 79     for(k=grid->ctop[i];kNk[i];k++)
 80       phys->stmp2[i][k]=0;
 81   }
 82 
 83   if(boundary_scal) {
 84     for(jptr=grid->edgedist[2];jptredgedist[5];jptr++) {
 85       j = grid->edgep[jptr];
 86 
 87       ib = grid->grad[2*j];
 88 
 89       // Set the value of stmp2 adjacent to the boundary to the value of the boundary.
 90       // This will be used to add the boundary flux when stmp2 is used again below.
 91       for(k=grid->ctop[ib];kNk[ib];k++)
 92         phys->stmp2[ib][k]=boundary_scal[jptr-grid->edgedist[2]][k];
 93     }
 94   }
 95 
 96   // Compute the scalar on the vertical faces (for horiz. advection)
 97 
 98   if(prop->TVD && prop->horiTVD)
 99     HorizontalFaceScalars(grid,phys,prop,scal,boundary_scal,prop->TVD,comm,myproc); 
100 
101   //for(iptr=grid->celldist[0];iptrcelldist[1];iptr++) {
102   for(iptr=grid->celldist[0];iptrcelldist[2];iptr++) {
103     i = grid->cellp[iptr];
104     Ac = grid->Ac[i];
105 
106     if(grid->ctop[i]>=grid->ctopold[i]) {
107       ktop=grid->ctop[i];
108       dznew=grid->dzz[i][ktop];
109     } else {
110       ktop=grid->ctopold[i];
111       dznew=0;
112       for(k=grid->ctop[i];k<=grid->ctopold[i];k++) 
113         dznew+=grid->dzz[i][k];      
114     }
115 
116     // These are the advective components of the tridiagonal
117     // at the new time step.
118     if(!(prop->TVD && prop->vertTVD))
119       for(k=0;kNk[i]+1;k++) {
120         ap[k] = 0.5*(wnew[i][k]+fabs(wnew[i][k]));
121         am[k] = 0.5*(wnew[i][k]-fabs(wnew[i][k]));
122       }
123     else  // Compute the ap/am for TVD schemes
124       GetApAm(ap,am,phys->wp,phys->wm,phys->Cp,phys->Cm,phys->rp,phys->rm,
125           wnew,grid->dzz,scal,i,grid->Nk[i],ktop,prop->dt,prop->TVD);
126 
127     for(k=ktop+1;kNk[i];k++) {
128       a[k-ktop]=theta*dt*am[k];
129       b[k-ktop]=grid->dzz[i][k]+theta*dt*(ap[k]-am[k+1]);
130       c[k-ktop]=-theta*dt*ap[k+1];
131     }
132 
133     // Top cell advection
134     a[0]=0;
135     b[0]=dznew-theta*dt*am[ktop+1];
136     c[0]=-theta*dt*ap[ktop+1];
137 
138     // Bottom cell no-flux boundary condition for advection
139     b[(grid->Nk[i]-1)-ktop]+=c[(grid->Nk[i]-1)-ktop];
140 
141     // Implicit vertical diffusion terms
142     for(k=ktop+1;kNk[i];k++)
143       bd[k]=(2.0*kappa+kappa_tv[i][k-1]+kappa_tv[i][k])/
144         (grid->dzz[i][k-1]+grid->dzz[i][k]);
145 
146     for(k=ktop+1;kNk[i]-1;k++) {
147       a[k-ktop]-=theta*dt*bd[k];
148       b[k-ktop]+=theta*dt*(bd[k]+bd[k+1]);
149       c[k-ktop]-=theta*dt*bd[k+1];
150     }
151     if(src1)
152       for(k=ktop;kNk[i];k++)
153         b[k-ktop]+=grid->dzz[i][k]*src1[i][k]*theta*dt;
154 
155     // Diffusive fluxes only when more than 1 layer
156     if(ktopNk[i]-1) {
157       // Top cell diffusion
158       b[0]+=theta*dt*(bd[ktop+1]+2*alpha_top*bd[ktop+1]);
159       c[0]-=theta*dt*bd[ktop+1];
160 
161       // Bottom cell diffusion
162       a[(grid->Nk[i]-1)-ktop]-=theta*dt*bd[grid->Nk[i]-1];
163       b[(grid->Nk[i]-1)-ktop]+=theta*dt*(bd[grid->Nk[i]-1]+2*alpha_bot*bd[grid->Nk[i]-1]);
164     }
165 
166     // Explicit part into source term d[] 
167     for(k=ktop+1;kNk[i];k++) 
168       d[k-ktop]=grid->dzzold[i][k]*phys->stmp[i][k];
169     if(src1)
170       for(k=ktop+1;kNk[i];k++) 
171         d[k-ktop]-=src1[i][k]*(1-theta)*dt*grid->dzzold[i][k]*phys->stmp[i][k];
172 
173     d[0]=0;
174     if(grid->ctopold[i]<=grid->ctop[i]) {
175       for(k=grid->ctopold[i];k<=grid->ctop[i];k++)
176         d[0]+=grid->dzzold[i][k]*phys->stmp[i][k];
177       if(src1)
178         for(k=grid->ctopold[i];k<=grid->ctop[i];k++)
179           d[0]-=src1[i][k]*(1-theta)*dt*grid->dzzold[i][k]*phys->stmp[i][k];
180     } else {
181       d[0]=grid->dzzold[i][ktop]*phys->stmp[i][ktop];
182       if(src1)
183         d[0]-=src1[i][ktop]*(1-theta)*dt*grid->dzzold[i][ktop]*phys->stmp[i][k];
184     }
185 
186     // These are the advective components of the tridiagonal
187     // that use the new velocity
188     if(!(prop->TVD && prop->vertTVD))
189       for(k=0;kNk[i]+1;k++) {
190         ap[k] = 0.5*(phys->wtmp2[i][k]+fabs(phys->wtmp2[i][k]));
191         am[k] = 0.5*(phys->wtmp2[i][k]-fabs(phys->wtmp2[i][k]));
192       }
193     else // Compute the ap/am for TVD schemes
194       GetApAm(ap,am,phys->wp,phys->wm,phys->Cp,phys->Cm,phys->rp,phys->rm,
195           phys->wtmp2,grid->dzzold,phys->stmp,i,grid->Nk[i],ktop,prop->dt,prop->TVD);
196 
197     // Explicit advection and diffusion
198     for(k=ktop+1;kNk[i]-1;k++) 
199       d[k-ktop]-=(1-theta)*dt*(am[k]*phys->stmp[i][k-1]+
200           (ap[k]-am[k+1])*phys->stmp[i][k]-
201           ap[k+1]*phys->stmp[i][k+1])-
202         (1-theta)*dt*(bd[k]*phys->stmp[i][k-1]
203             -(bd[k]+bd[k+1])*phys->stmp[i][k]
204             +bd[k+1]*phys->stmp[i][k+1]);
205 
206     if(ktopNk[i]-1) {
207       //Flux through bottom of top cell
208       k=ktop;
209       d[0]=d[0]-(1-theta)*dt*(-am[k+1]*phys->stmp[i][k]-
210           ap[k+1]*phys->stmp[i][k+1])+
211         (1-theta)*dt*(-(2*alpha_top*bd[k+1]+bd[k+1])*phys->stmp[i][k]+
212             bd[k+1]*phys->stmp[i][k+1]);
213       if(Ftop) d[0]+=dt*(1-alpha_top+2*alpha_top*bd[k+1])*Ftop[i];
214 
215       // Through top of bottom cell
216       k=grid->Nk[i]-1;
217       d[k-ktop]-=(1-theta)*dt*(am[k]*phys->stmp[i][k-1]+
218           ap[k]*phys->stmp[i][k])-
219         (1-theta)*dt*(bd[k]*phys->stmp[i][k-1]-
220             (bd[k]+2*alpha_bot*bd[k])*phys->stmp[i][k]);
221       if(Fbot) d[k-ktop]+=dt*(-1+alpha_bot+2*alpha_bot*bd[k])*Fbot[i];
222     }
223 
224     // First add on the source term from the previous time step.
225     if(grid->ctop[i]<=grid->ctopold[i]) {
226       for(k=grid->ctop[i];k<=grid->ctopold[i];k++) 
227         d[0]+=(1-fab)*Cn[i][grid->ctopold[i]]/(1+fabs(grid->ctop[i]-grid->ctopold[i]));
228       for(k=grid->ctopold[i]+1;kNk[i];k++) 
229         d[k-grid->ctopold[i]]+=(1-fab)*Cn[i][k];
230     } else {
231       for(k=grid->ctopold[i];k<=grid->ctop[i];k++) 
232         d[0]+=(1-fab)*Cn[i][k];
233       for(k=grid->ctop[i]+1;kNk[i];k++) 
234         d[k-grid->ctop[i]]+=(1-fab)*Cn[i][k];
235     }
236 
237     for(k=0;kctop[i];k++)
238       Cn[i][k]=0;
239 
240     if(src2)
241       for(k=grid->ctop[i];kNk[i];k++) 
242         Cn[i][k-ktop]=dt*src2[i][k]*grid->dzzold[i][k];
243     else
244       for(k=grid->ctop[i];kNk[i];k++)
245         Cn[i][k]=0;
246 
247     // Now create the source term for the current time step
248     for(k=0;kNk[i];k++)
249       ap[k]=0;
250 
251     for(nf=0;nfnfaces[i];nf++) {
252       ne = grid->face[i*grid->maxfaces+nf];
253       normal = grid->normal[i*grid->maxfaces+nf];
254       df = grid->df[ne];
255       dg = grid->dg[ne];
256       nc1 = grid->grad[2*ne];
257       nc2 = grid->grad[2*ne+1];
258       if(nc1==-1) nc1=nc2;
259       if(nc2==-1) {
260         nc2=nc1;
261         if(boundary_scal && (grid->mark[ne]==2 || grid->mark[ne]==3))
262           sp=phys->stmp2[nc1];
263         else
264           sp=phys->stmp[nc1];
265       } else 
266         sp=phys->stmp[nc2];
267 
268       if(!(prop->TVD && prop->horiTVD)) {
269         for(k=0;kNke[ne];k++) 
270           temp[k]=UpWind(phys->utmp2[ne][k],
271               phys->stmp[nc1][k],
272               sp[k]);
273       } else {
274         for(k=0;kNke[ne];k++) 
275           if(phys->utmp2[ne][k]>0)
276             temp[k]=phys->SfHp[ne][k];
277           else
278             temp[k]=phys->SfHm[ne][k];        
279       }
280 
281       for(k=0;kNke[ne];k++)
282         ap[k] += dt*df*normal/Ac*(theta*phys->u[ne][k]+(1-theta)*phys->utmp2[ne][k])
283           *temp[k]*grid->dzf[ne][k];
284     }
285 
286     for(k=ktop+1;kNk[i];k++) 
287       Cn[i][k-ktop]-=ap[k];
288 
289     for(k=0;k<=ktop;k++) 
290       Cn[i][0]-=ap[k];
291 
292     // Add on the source from the current time step to the rhs.
293     for(k=0;kNk[i]-ktop;k++) 
294       d[k]+=fab*Cn[i][k];
295 
296     // Add on the volume correction if h was < -d
297     /*
298        if(grid->ctop[i]==grid->Nk[i]-1)
299        d[grid->Nk[i]-ktop-1]+=phys->hcorr[i]*phys->stmp[i][grid->ctop[i]];
300        */
301 
302     for(k=ktop;kNk[i];k++)
303       ap[k]=Cn[i][k-ktop];
304     for(k=0;k<=ktop;k++)
305       Cn[i][k]=0;
306     for(k=ktop+1;kNk[i];k++)
307       Cn[i][k]=ap[k];
308     for(k=grid->ctop[i];k<=ktop;k++)
309       Cn[i][k]=ap[ktop]/(1+fabs(grid->ctop[i]-ktop));
310 
311     if(grid->Nk[i]-ktop>1) 
312       TriSolve(a,b,c,d,&(scal[i][ktop]),grid->Nk[i]-ktop);
313     else if(prop->n>1) {
314       if(b[0]>0 && phys->active[i])
315         scal[i][ktop]=d[0]/b[0];
316       else 
317         scal[i][ktop]=0;
318     }
319 
320     for(k=0;kctop[i];k++)
321       scal[i][k]=0;
322 
323     for(k=grid->ctop[i];kctopold[i];k++) 
324       scal[i][k]=scal[i][ktop];
325   }
326 
327   // Code to check divergence change CHECKCONSISTENCY to 1 in suntans.h
328   if(CHECKCONSISTENCY && checkflag) {
329 
330     if(prop->n==1+prop->nstart) {
331       smin=INFTY;
332       smax=-INFTY;
333       for(i=0;iNc;i++) {
334         for(k=grid->ctop[i];kNk[i];k++) {
335           if(phys->stmp[i][k]>smax) { 
336             smax=phys->stmp[i][k]; 
337             imax=i; 
338             kmax=k; 
339           }
340           if(phys->stmp[i][k]<smin) { 
341             smin=phys->stmp[i][k]; 
342             imin=i; 
343             kmin=k; 
344           }
345         }
346       }
347       MPI_Reduce(&smin,&smin_value,1,MPI_DOUBLE,MPI_MIN,0,comm);
348       MPI_Reduce(&smax,&smax_value,1,MPI_DOUBLE,MPI_MAX,0,comm);
349       MPI_Bcast(&smin_value,1,MPI_DOUBLE,0,comm);
350       MPI_Bcast(&smax_value,1,MPI_DOUBLE,0,comm);
351 
352       if(myproc==0)
353         printf("Minimum scalar: %.2f, maximum: %.2f\n",smin_value,smax_value);
354     }      
355 
356     //for(iptr=grid->celldist[0];iptrcelldist[1];iptr++) {
357     for(iptr=grid->celldist[0];iptrcelldist[2];iptr++) {
358       i = grid->cellp[iptr];
359 
360       flag=0;
361       for(nf=0;nfnfaces[i];nf++) {
362         if(grid->mark[grid->face[i*grid->maxfaces+nf]]==2 || 
363             grid->mark[grid->face[i*grid->maxfaces+nf]]==3) {
364           flag=1;
365           break;
366         }
367       }
368 
369       if(!flag) {
370         div_da=0;
371 
372         for(k=0;kNk[i];k++) {
373           div_da+=grid->Ac[i]*(grid->dzz[i][k]-grid->dzzold[i][k])/prop->dt;
374 
375           div_local=0;
376           for(nf=0;nfnfaces[i];nf++) {
377             ne=grid->face[i*grid->maxfaces+nf];
378             div_local+=(theta*phys->u[ne][k]+(1-theta)*phys->utmp2[ne][k])
379               *grid->dzf[ne][k]*grid->normal[i*grid->maxfaces+nf]*grid->df[ne];
380           }
381           div_da+=div_local;
382           div_local+=grid->Ac[i]*(theta*(wnew[i][k]-wnew[i][k+1])+
383               (1-theta)*(phys->wtmp2[i][k]-phys->wtmp2[i][k+1]));
384 
385           if(k>=grid->ctop[i]) {
386             if(fabs(div_local)>SMALL_CONSISTENCY && grid->dzz[imin][0]>DRYCELLHEIGHT) 
387               printf("Step: %d, proc: %d, locally-divergent at %d, %d, div=%e\n",
388                   prop->n,myproc,i,k,div_local);
389           }
390         }
391         if(fabs(div_da)>SMALL_CONSISTENCY && phys->h[i]+grid->dv[i]>DRYCELLHEIGHT)
392           printf("Step: %d, proc: %d, Depth-Ave divergent at i=%d, div=%e\n",
393               prop->n,myproc,i,div_da);
394       }
395     }
396 
397     mincount=0;
398     maxcount=0;
399     smin=INFTY;
400     smax=-INFTY;
401     //for(iptr=grid->celldist[0];iptrcelldist[1];iptr++) {
402     for(iptr=grid->celldist[0];iptrcelldist[2];iptr++) {
403       i = grid->cellp[iptr];
404 
405       flag=0;
406       for(nf=0;nfnfaces[i];nf++) {
407         if(grid->mark[grid->face[i*grid->maxfaces+nf]]==2 || grid->mark[grid->face[i*grid->maxfaces+nf]]==3) {
408           flag=1;
409           break;
410         }
411       }
412 
413       if(!flag) {
414         for(k=grid->ctop[i];kNk[i];k++) {
415           if(scal[i][k]>smax) { 
416             smax=scal[i][k]; 
417             imax=i; 
418             kmax=k; 
419           }
420           if(scal[i][k]<smin) { 
421             smin=scal[i][k]; 
422             imin=i; 
423             kmin=k; 
424           }
425 
426           if(scal[i][k]>smax_value+SMALL_CONSISTENCY && grid->dzz[i][k]>DRYCELLHEIGHT)
427             maxcount++;
428           if(scal[i][k]dzz[i][k]>DRYCELLHEIGHT)
429             mincount++;
430         }
431       }
432     }
433     MPI_Reduce(&mincount,&allmincount,1,MPI_INT,MPI_SUM,0,comm);
434     MPI_Reduce(&maxcount,&allmaxcount,1,MPI_INT,MPI_SUM,0,comm);
435 
436     if(mincount!=0 || maxcount!=0) 
437       printf("Not CWC, step: %d, proc: %d, smin = %e at i=%d,H=%e, smax = %e at i=%d,H=%e\n",
438           prop->n,myproc,
439           smin,imin,phys->h[imin]+grid->dv[imin],
440           smax,imax,phys->h[imax]+grid->dv[imax]);
441 
442     if(myproc==0 && (allmincount !=0 || allmaxcount !=0))
443       printf("Total number of CWC violations (all procs): ss_max: %d\n",
444           allmincount,allmaxcount);
445   }
446   }
View Code

 

 

 

下面介绍解读UpdateScalars函数过程:

1. 首先作为一个复杂的非静压N-S模型,变量比较多是很正常的,所以不要纠结每个变量是什么意思,能看懂就看,看不懂就猜好了。

2.要从整体入手。根据目前已知信息,这是用有限体积法求解对流扩散方程模块,而所求标量值应该就是就是第5个参数 **scal 所代表的变量。那么从函数最后一次更新 scal 变量的地方,或许能获得些许线索。

 第311行:

      if(grid->Nk[i]-ktop>1) TriSolve(a,b,c,d,&(scal[i][ktop]),grid->Nk[i]-ktop);

 

检查 TriSolve 函数的定义,原来是求解三对角方程组的解法,a,b,c 分别是系数矩阵三个对角向量,d是等号右端常向量,未知数为以 scal[i][ktop] 起始的数组。

而准备a,b,c 等系数向量时,循环变量多是按照某个三棱柱各层从上到下进行循环,所以不难看出,这个方程组求解的应该就是某个三棱柱单元体内各层标量值大小。

3. 将程序数值离散过程和理论结合起来,了解程序细节

 

FVCOM 模型求解过程

 

FVCOM 也是使用有限体积方法,但是求解和 SUNTANS 有很大不同。由于FVCOM并没有介绍对流扩散方程求解具体过程的文献,这时程序看起来就比较头疼,只能全部通过读程序来一点点理解。

FVCOM 扩散方程计算主要在程序 mod_scal.F 中,模块内全部程序如下

  1 !/===========================================================================/
  2 ! Copyright (c) 2007, The University of Massachusetts Dartmouth 
  3 ! Produced at the School of Marine Science & Technology 
  4 ! Marine Ecosystem Dynamics Modeling group
  5 ! All rights reserved.
  6 !
  7 ! FVCOM has been developed by the joint UMASSD-WHOI research team. For 
  8 ! details of authorship and attribution of credit please see the FVCOM
  9 ! technical manual or contact the MEDM group.
 10 !
 11 ! 
 12 ! This file is part of FVCOM. For details, see http://fvcom.smast.umassd.edu 
 13 ! The full copyright notice is contained in the file COPYRIGHT located in the 
 14 ! root directory of the FVCOM code. This original header must be maintained
 15 ! in all distributed versions.
 16 !
 17 ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 
 18 ! AND ANY EXPRESS OR  IMPLIED WARRANTIES, INCLUDING,  BUT NOT  LIMITED TO,
 19 ! THE IMPLIED WARRANTIES OF MERCHANTABILITY AND  FITNESS FOR A PARTICULAR
 20 ! PURPOSE ARE DISCLAIMED.  
 21 !
 22 !/---------------------------------------------------------------------------/
 23 ! CVS VERSION INFORMATION
 24 ! $Id$
 25 ! $Name$
 26 ! $Revision$
 27 !/===========================================================================/
 28 
 29 !=======================================================================
 30 ! FVCOM Scalar Module  
 31 !
 32 !    contains methods:
 33 !        Adv_Scal            => Advect a Scalar Quantity 
 34 !        Vdif_Scal           => Vertical Diffusion of Scalar Quantity
 35 !        Bcond_Scal_OBC      => Open Boundary Condition for Scalar
 36 !        Bcond_Scal_PTsource => Point Sources of Scalar
 37 !=======================================================================
 38 Module Scalar
 39 
 40   logical, parameter :: debug = .true. 
 41 
 42   contains
 43 !==============================================================================|
 44 ! Calculate Horizontal Advection and Diffusion For Scalar (f)                  |
 45 !==============================================================================|
 46   Subroutine Adv_Scal(f,fn,d_fdis,fdis,d_fflux,fflux_obc,deltat,source)
 47 !------------------------------------------------------------------------------|
 48 
 49   use all_vars
 50   use lims, only: m,mt,n,nt,kbm1,kb
 51   use bcs
 52   use mod_obcs
 53 # if defined (MULTIPROCESSOR)
 54   use mod_par
 55 # endif
 56 # if defined (WET_DRY)
 57   use mod_wd
 58 # endif
 59 
 60 # if defined (THIN_DAM)
 61   use mod_dam, only : kdam,N_DAM_MATCH,IS_DAM
 62 # endif
 63 
 64   implicit none
 65   real(sp), intent(in ), dimension(0:mt,kb)      :: f 
 66   real(sp), intent(out), dimension(0:mt,kb)      :: fn
 67   integer , intent(in )                          :: d_fdis
 68   real(sp), intent(in ), dimension(d_fdis)       :: fdis
 69   integer , intent(in )                          :: d_fflux
 70   real(sp), intent(out), dimension(d_fflux,kbm1) :: fflux_obc 
 71   real(sp), intent(in )                          :: deltat
 72   logical , intent(in )                          :: source
 73 
 74   !----------------local--------------------------------------
 75   real(sp), dimension(0:mt,kb)   :: xflux,xflux_adv
 76   real(sp), dimension(m)         :: pupx,pupy,pvpx,pvpy  
 77   real(sp), dimension(m)         :: pfpx,pfpy,pfpxd,pfpyd,viscoff
 78   real(sp), dimension(3*nt)      :: dtij 
 79   real(sp), dimension(3*nt,kbm1) :: uvn
 80   real(sp), dimension(kb)        :: vflux
 81   real(sp) :: utmp,vtmp,sitai,ffd,ff1,x11,y11,x22,y22,x33,y33
 82   real(sp) :: tmp1,tmp2,xi,yi
 83   real(sp) :: dxa,dya,dxb,dyb,fij1,fij2,un
 84   real(sp) :: txx,tyy,fxx,fyy,viscof,exflux,temp,fpoint
 85   real(sp) :: fact,fm1,fmean
 86   integer  :: i,i1,i2,ia,ib,j,j1,j2,k,jtmp,jj
 87 # if defined (SPHERICAL)
 88   real(sp) :: ty,txpi,typi
 89 # endif
 90 
 91 # if defined (THIN_DAM)
 92   INTEGER  :: NX
 93   real(sp) :: tmpflx
 94   real(sp),dimension(kb) :: wvel
 95 # endif
 96 
 97 
 98 !------------------------------------------------------------------------------!
 99 
100 !-------------------------------------------------------
101 !Calculate Mean Values
102 !-------------------------------------------------------
103 
104   fmean = sum(f(1:m,1:kbm1))/float(m*kbm1)
105 
106 !-------------------------------------------------------
107 !Initialize Multipliers to Control Horizontal Diff
108 !-------------------------------------------------------
109 
110   fact = 0.0_sp
111   fm1  = 1.0_sp
112   if(HORIZONTAL_MIXING_TYPE == 'closure') then
113     fact = 1.0_sp
114     fm1  = 0.0_sp
115   end if
116      
117 !-------------------------------------------------------
118 !Initialize Fluxes
119 !-------------------------------------------------------
120   xflux     = 0.0_sp
121   xflux_adv = 0.0_sp
122 
123 !-------------------------------------------------------
124 !Calculate Normal Velocity on Control Volume Edges
125 !-------------------------------------------------------
126 !!# if !defined (WET_DRY)
127   do i=1,ncv
128     i1=ntrg(i)
129     dtij(i)=dt1(i1)
130     do k=1,kbm1
131       uvn(i,k) = v(i1,k)*dltxe(i) - u(i1,k)*dltye(i)
132 
133 #  if defined(PLBC)
134       uvn(i,k) =  - u(i1,k)*dltye(i)
135 #  endif
136 
137     end do
138   end do
139 !!# else
140 !!  do i=1,ncv
141 !!    i1=ntrg(i)
142 !!    dtij(i)=dt1(i1)
143 !!    do k=1,kbm1
144 !!      uvn(i,k) = vs(i1,k)*dltxe(i) - us(i1,k)*dltye(i)
145 !!    end do
146 !!  end do
147 !!# endif
148 
149 !
150 !--Calculate the Advection and Horizontal Diffusion Terms----------------------!
151 !
152 
153    do k=1,kbm1
154       pfpx  = 0.0_sp 
155       pfpy  = 0.0_sp 
156       pfpxd = 0.0_sp 
157       pfpyd = 0.0_sp
158      do i=1,m
159        do j=1,ntsn(i)-1
160          i1=nbsn(i,j)
161          i2=nbsn(i,j+1)
162 
163 #    if defined (WET_DRY)
164          IF(ISWETN(I1) == 0 .AND. ISWETN(I2) == 1)THEN
165           FFD=0.5_SP*(f(I,K)+f(I2,K))
166           FF1=0.5_SP*(f(I,K)+f(I2,K))
167      ELSE IF(ISWETN(I1) == 1 .AND. ISWETN(I2) == 0)THEN
168           FFD=0.5_SP*(f(I1,K)+f(I,K))
169           FF1=0.5_SP*(f(I1,K)+f(I,K))
170      ELSE IF(ISWETN(I1) == 0 .AND. ISWETN(I2) == 0)THEN
171           FFD=0.5_SP*(f(I,K)+f(I,K))
172           FF1=0.5_SP*(f(I,K)+f(I,K))
173      ELSE
174           FFD=0.5_SP*(f(I1,K)+f(I2,K))
175           FF1=0.5_SP*(f(I1,K)+f(I2,K))
176      END IF 
177 #    else     
178          ffd=0.5_sp*(f(i1,k)+f(i2,k)) !-fmean1(i1,k)-fmean1(i2,k))
179          ff1=0.5_sp*(f(i1,k)+f(i2,k))
180 #    endif     
181      
182 #        if defined (SPHERICAL)
183          ty=0.5_sp*(vy(i1)+vy(i2))
184          txpi=(vx(i2)-vx(i1))*tpi*cos(deg2rad*ty)
185          typi=(vy(i1)-vy(i2))*tpi
186          pfpx(i)=pfpx(i)+ff1*typi
187          pfpy(i)=pfpy(i)+ff1*txpi
188          pfpxd(i)=pfpxd(i)+ffd*typi
189          pfpyd(i)=pfpyd(i)+ffd*txpi
190 #        else
191          pfpx(i) = pfpx(i) +ff1*(vy(i1)-vy(i2))
192          pfpy(i) = pfpy(i) +ff1*(vx(i2)-vx(i1))
193          pfpxd(i)= pfpxd(i)+ffd*(vy(i1)-vy(i2))
194          pfpyd(i)= pfpyd(i)+ffd*(vx(i2)-vx(i1))
195 #        endif
196        end do
197 
198 ! gather all neighboring control volumes connecting at dam node 
199 # if defined (THIN_DAM)
200        IF(IS_DAM(I)==1.AND.K<=KDAM(I))THEN
201          DO NX=1,N_DAM_MATCH(I,1)
202            DO J=1,NTSN(N_DAM_MATCH(I,NX+1))-1
203              I1=NBSN(N_DAM_MATCH(I,NX+1),J)
204              I2=NBSN(N_DAM_MATCH(I,NX+1),J+1)
205              FFD=0.5_SP*(f(I1,K)+f(I2,K)) !-SMEAN1(I1,K)-SMEAN1(I2,K))
206              FF1=0.5_SP*(f(I1,K)+f(I2,K))
207 #        if defined (SPHERICAL)
208              ty=0.5_sp*(vy(i1)+vy(i2))
209              txpi=(vx(i2)-vx(i1))*tpi*cos(deg2rad*ty)
210              typi=(vy(i1)-vy(i2))*tpi
211              pfpx(i)=pfpx(i)+ff1*typi
212              pfpy(i)=pfpy(i)+ff1*txpi
213              pfpxd(i)=pfpxd(i)+ffd*typi
214              pfpyd(i)=pfpyd(i)+ffd*txpi
215 #        else
216              pfpx(i) = pfpx(i) +ff1*(vy(i1)-vy(i2))
217              pfpy(i) = pfpy(i) +ff1*(vx(i2)-vx(i1))
218              pfpxd(i)= pfpxd(i)+ffd*(vy(i1)-vy(i2))
219              pfpyd(i)= pfpyd(i)+ffd*(vx(i2)-vx(i1))
220 #        endif
221            END DO
222          END DO
223        END IF
224 # endif
225 
226 # if !defined (THIN_DAM)
227        pfpx(i)  =pfpx(i )/art2(i)
228        pfpy(i)  =pfpy(i )/art2(i)
229        pfpxd(i) =pfpxd(i)/art2(i)
230        pfpyd(i) =pfpyd(i)/art2(i)
231 # else
232        IF(IS_DAM(I)==1.AND.K<=KDAM(I))THEN
233          PFPX(I)=PFPX(I)/(ART2(I)+SUM(ART2(N_DAM_MATCH(I,2:1+N_DAM_MATCH(I,1)))))
234          PFPY(I)=PFPY(I)/(ART2(I)+SUM(ART2(N_DAM_MATCH(I,2:1+N_DAM_MATCH(I,1)))))
235          PFPXD(I)=PFPXD(I)/(ART2(I)+SUM(ART2(N_DAM_MATCH(I,2:1+N_DAM_MATCH(I,1)))))
236          PFPYD(I)=PFPYD(I)/(ART2(I)+SUM(ART2(N_DAM_MATCH(I,2:1+N_DAM_MATCH(I,1)))))
237        ELSE
238          PFPX(I)=PFPX(I)/ART2(I)
239          PFPY(I)=PFPY(I)/ART2(I)
240          PFPXD(I)=PFPXD(I)/ART2(I)
241          PFPYD(I)=PFPYD(I)/ART2(I)
242        END IF
243 # endif
244 
245      end do
246           
247      if(k == kbm1)then
248        do i=1,m
249          pfpxb(i) = pfpx(i)
250          pfpyb(i) = pfpy(i)
251        end do
252      end if
253 
254      do i=1,m
255        pupx(i)=0.0_sp
256        pupy(i)=0.0_sp
257        pvpx(i)=0.0_sp
258        pvpy(i)=0.0_sp
259        j=1
260        i1=nbve(i,j)
261        jtmp=nbvt(i,j)
262        j1=jtmp+1-(jtmp+1)/4*3
263        j2=jtmp+2-(jtmp+2)/4*3
264        x11=0.5_sp*(vx(i)+vx(nv(i1,j1)))
265        y11=0.5_sp*(vy(i)+vy(nv(i1,j1)))
266        x22=xc(i1)
267        y22=yc(i1)
268        x33=0.5_sp*(vx(i)+vx(nv(i1,j2)))
269        y33=0.5_sp*(vy(i)+vy(nv(i1,j2)))
270 
271 #      if defined (SPHERICAL)
272        ty  =0.5_sp*(y11+y33)
273        txpi=(x33-x11)*tpi*cos(deg2rad*ty)
274        typi=(y11-y33)*tpi
275        pupx(i)=pupx(i)+u(i1,k)*typi 
276        pupy(i)=pupy(i)+u(i1,k)*txpi
277        pvpx(i)=pvpx(i)+v(i1,k)*typi
278        pvpy(i)=pvpy(i)+v(i1,k)*txpi
279 #      else
280        pupx(i)=pupx(i)+u(i1,k)*(y11-y33)
281        pupy(i)=pupy(i)+u(i1,k)*(x33-x11)
282        pvpx(i)=pvpx(i)+v(i1,k)*(y11-y33)
283        pvpy(i)=pvpy(i)+v(i1,k)*(x33-x11)
284 #      endif
285 
286        if(isonb(i) /= 0) then
287 #        if defined (SPHERICAL)
288          ty=0.5_sp*(vy(i)+y11)
289          txpi=(x11-vx(i))*tpi*cos(deg2rad*ty)
290          typi=(vy(i)-y11)*tpi
291          pupx(i)=pupx(i)+u(i1,k)*typi
292          pupy(i)=pupy(i)+u(i1,k)*txpi
293          pvpx(i)=pvpx(i)+v(i1,k)*typi
294          pvpy(i)=pvpy(i)+v(i1,k)*txpi
295 #        else
296          pupx(i)=pupx(i)+u(i1,k)*(vy(i)-y11)
297          pupy(i)=pupy(i)+u(i1,k)*(x11-vx(i))
298          pvpx(i)=pvpx(i)+v(i1,k)*(vy(i)-y11)
299          pvpy(i)=pvpy(i)+v(i1,k)*(x11-vx(i))
300 #        endif
301        end if
302 
303        do j=2,ntve(i)-1
304          i1=nbve(i,j)
305          jtmp=nbvt(i,j)
306          j1=jtmp+1-(jtmp+1)/4*3
307          j2=jtmp+2-(jtmp+2)/4*3
308          x11=0.5_sp*(vx(i)+vx(nv(i1,j1)))
309          y11=0.5_sp*(vy(i)+vy(nv(i1,j1)))
310          x22=xc(i1)
311          y22=yc(i1)
312          x33=0.5_sp*(vx(i)+vx(nv(i1,j2)))
313          y33=0.5_sp*(vy(i)+vy(nv(i1,j2)))
314 
315 #        if defined (SPHERICAL)
316          ty=0.5_sp*(y11+y33)
317          txpi=(x33-x11)*tpi*COS(deg2rad*TY)
318          typi=(y11-y33)*tpi
319          pupx(i)=pupx(i)+u(i1,k)*typi
320          pupy(i)=pupy(i)+u(i1,k)*txpi
321          pvpx(i)=pvpx(i)+v(i1,k)*typi
322          pvpy(i)=pvpy(i)+v(i1,k)*txpi
323 #        else
324          pupx(i)=pupx(i)+u(i1,k)*(y11-y33)
325          pupy(i)=pupy(i)+u(i1,k)*(x33-x11)
326          pvpx(i)=pvpx(i)+v(i1,k)*(y11-y33)
327          pvpy(i)=pvpy(i)+v(i1,k)*(x33-x11)
328 #        endif
329        end do
330        j=ntve(i)
331        i1=nbve(i,j)
332        jtmp=nbvt(i,j)
333        j1=jtmp+1-(jtmp+1)/4*3
334        j2=jtmp+2-(jtmp+2)/4*3
335        x11=0.5_sp*(vx(i)+vx(nv(i1,j1)))
336        y11=0.5_sp*(vy(i)+vy(nv(i1,j1)))
337        x22=xc(i1)
338        y22=yc(i1)
339        x33=0.5_sp*(vx(i)+vx(nv(i1,j2)))
340        y33=0.5_sp*(vy(i)+vy(nv(i1,j2)))
341 
342 #      if defined (SPHERICAL)
343        ty=0.5*(Y11+Y33)
344        txpi=(x33-x11)*tpi*cos(deg2rad*TY)
345        typi=(y11-y33)*tpi
346        pupx(i)=pupx(i)+u(i1,k)*typi
347        pupy(i)=pupy(i)+u(i1,k)*txpi
348        pvpx(i)=pvpx(i)+v(i1,k)*typi
349        pvpy(i)=pvpy(i)+v(i1,k)*txpi
350 #      else
351        pupx(i)=pupx(i)+u(i1,k)*(y11-y33)
352        pupy(i)=pupy(i)+u(i1,k)*(x33-x11)
353        pvpx(i)=pvpx(i)+v(i1,k)*(y11-y33)
354        pvpy(i)=pvpy(i)+v(i1,k)*(x33-x11)
355 #      endif
356 
357        if(isonb(i) /= 0) then
358 #      if defined (SPHERICAL)
359          ty=0.5*(Y11+VY(I))
360          txpi=(VX(I)-X11)*tpi*COS(deg2rad*ty)
361          typi=(Y11-VY(I))*tpi
362          pupx(i)=pupx(i)+u(i1,k)*typi
363          pupy(i)=pupy(i)+u(i1,k)*txpi
364          pvpx(i)=pvpx(i)+v(i1,k)*typi
365          pvpy(i)=pvpy(i)+v(i1,k)*txpi
366 #        else
367          pupx(i)=pupx(i)+u(i1,k)*(y11-vy(i))
368          pupy(i)=pupy(i)+u(i1,k)*(vx(i)-x11)
369          pvpx(i)=pvpx(i)+v(i1,k)*(y11-vy(i))
370          pvpy(i)=pvpy(i)+v(i1,k)*(vx(i)-x11)
371 #        endif
372        end if
373        pupx(i)=pupx(i)/art1(i)
374        pupy(i)=pupy(i)/art1(i)
375        pvpx(i)=pvpx(i)/art1(i)
376        pvpy(i)=pvpy(i)/art1(i)
377        tmp1=pupx(i)**2+pvpy(i)**2
378        tmp2=0.5_sp*(pupy(i)+pvpx(i))**2
379        viscoff(i)=sqrt(tmp1+tmp2)*art1(i)
380      end do
381 !     if(k == kbm1) then
382 !       ah_bottom(1:m) = horcon*(fact*viscoff(1:m) + fm1)
383 !     end if
384 
385 
386      do i=1,ncv_i
387        ia=niec(i,1)
388        ib=niec(i,2)
389        xi=0.5_sp*(xije(i,1)+xije(i,2))
390        yi=0.5_sp*(yije(i,1)+yije(i,2))
391 #      if defined (SPHERICAL)
392        ty=0.5_sp*(yi+vy(ia))
393        dxa=(xi-vx(ia))*tpi*cos(deg2rad*ty)
394        dya=(yi-vy(ia))*tpi
395        ty=0.5*(YI+VY(IB))
396        DXB=(XI-VX(IB))*tpi*COS(deg2rad*ty)
397        DYB=(YI-VY(IB))*tpi
398 #      else
399        dxa=xi-vx(ia)
400        dya=yi-vy(ia)
401        dxb=xi-vx(ib)
402        dyb=yi-vy(ib)
403 #      endif
404        fij1=f(ia,k)+dxa*pfpx(ia)+dya*pfpy(ia)
405        fij2=f(ib,k)+dxb*pfpx(ib)+dyb*pfpy(ib)
406        un=uvn(i,k)
407 
408 !       viscof=horcon*(fact*(viscoff(ia)+viscoff(ib))*0.5_sp + fm1)
409         VISCOF=(FACT*0.5_SP*(VISCOFF(IA)*NN_HVC(IA)+VISCOFF(IB)*NN_HVC(IB)) + FM1*0.5_SP*(NN_HVC(IA)+NN_HVC(IB)))
410 
411        txx=0.5_sp*(pfpxd(ia)+pfpxd(ib))*viscof
412        tyy=0.5_sp*(pfpyd(ia)+pfpyd(ib))*viscof
413 
414        fxx=-dtij(i)*txx*dltye(i)
415        fyy= dtij(i)*tyy*dltxe(i)
416 
417 # if defined (PLBC)
418        fyy=0.0_SP
419 # endif
420 
421        exflux=-un*dtij(i)* &
422           ((1.0_sp+sign(1.0_sp,un))*fij2+(1.0_sp-sign(1.0_sp,un))*fij1)*0.5_sp+fxx+fyy
423 
424        xflux(ia,k)=xflux(ia,k)+exflux
425        xflux(ib,k)=xflux(ib,k)-exflux
426 
427        xflux_adv(ia,k)=xflux_adv(ia,k)+(exflux-fxx-fyy)
428        xflux_adv(ib,k)=xflux_adv(ib,k)-(exflux-fxx-fyy)
429 
430 #      if defined (THIN_DAM)
431        IF(K<=KDAM(IA).AND.IS_DAM(IA)==1)THEN
432          IF(N_DAM_MATCH(IA,1)==1)THEN
433            XFLUX(N_DAM_MATCH(IA,2),K) = XFLUX(N_DAM_MATCH(IA,2),K) + EXFLUX
434            XFLUX_ADV(N_DAM_MATCH(IA,2),K) = XFLUX_ADV(N_DAM_MATCH(IA,2),K) +(EXFLUX-FXX-FYY)
435          END IF
436          IF(N_DAM_MATCH(IA,1)==2)THEN
437            XFLUX(N_DAM_MATCH(IA,2),K) = XFLUX(N_DAM_MATCH(IA,2),K) + EXFLUX
438            XFLUX(N_DAM_MATCH(IA,3),K) = XFLUX(N_DAM_MATCH(IA,3),K) + EXFLUX
439            XFLUX_ADV(N_DAM_MATCH(IA,2),K) = XFLUX_ADV(N_DAM_MATCH(IA,2),K) +(EXFLUX-FXX-FYY)
440            XFLUX_ADV(N_DAM_MATCH(IA,3),K) = XFLUX_ADV(N_DAM_MATCH(IA,3),K) +(EXFLUX-FXX-FYY)
441          END IF
442          IF(N_DAM_MATCH(IA,1)==3)THEN
443            XFLUX(N_DAM_MATCH(IA,2),K) = XFLUX(N_DAM_MATCH(IA,2),K) + EXFLUX
444            XFLUX(N_DAM_MATCH(IA,3),K) = XFLUX(N_DAM_MATCH(IA,3),K) + EXFLUX
445            XFLUX(N_DAM_MATCH(IA,4),K) = XFLUX(N_DAM_MATCH(IA,4),K) + EXFLUX
446            XFLUX_ADV(N_DAM_MATCH(IA,2),K) = XFLUX_ADV(N_DAM_MATCH(IA,2),K) +(EXFLUX-FXX-FYY)
447            XFLUX_ADV(N_DAM_MATCH(IA,3),K) = XFLUX_ADV(N_DAM_MATCH(IA,3),K) +(EXFLUX-FXX-FYY)
448            XFLUX_ADV(N_DAM_MATCH(IA,4),K) = XFLUX_ADV(N_DAM_MATCH(IA,4),K) +(EXFLUX-FXX-FYY)
449          END IF
450        END IF
451        IF(K<=KDAM(IB).AND.IS_DAM(IB)==1)THEN
452          IF(N_DAM_MATCH(IB,1)==1)THEN
453            XFLUX(N_DAM_MATCH(IB,2),K) = XFLUX(N_DAM_MATCH(IB,2),K) - EXFLUX
454            XFLUX_ADV(N_DAM_MATCH(IB,2),K) = XFLUX_ADV(N_DAM_MATCH(IB,2),K) - (EXFLUX-FXX-FYY)
455          END IF
456          IF(N_DAM_MATCH(IB,1)==2)THEN
457            XFLUX(N_DAM_MATCH(IB,2),K) = XFLUX(N_DAM_MATCH(IB,2),K) - EXFLUX
458            XFLUX(N_DAM_MATCH(IB,3),K) = XFLUX(N_DAM_MATCH(IB,3),K) - EXFLUX
459            XFLUX_ADV(N_DAM_MATCH(IB,2),K) = XFLUX_ADV(N_DAM_MATCH(IB,2),K) - (EXFLUX-FXX-FYY)
460            XFLUX_ADV(N_DAM_MATCH(IB,3),K) = XFLUX_ADV(N_DAM_MATCH(IB,3),K) - (EXFLUX-FXX-FYY)
461          END IF
462          IF(N_DAM_MATCH(IB,1)==3)THEN
463            XFLUX(N_DAM_MATCH(IB,2),K) = XFLUX(N_DAM_MATCH(IB,2),K) - EXFLUX
464            XFLUX(N_DAM_MATCH(IB,3),K) = XFLUX(N_DAM_MATCH(IB,3),K) - EXFLUX
465            XFLUX(N_DAM_MATCH(IB,4),K) = XFLUX(N_DAM_MATCH(IB,4),K) - EXFLUX
466            XFLUX_ADV(N_DAM_MATCH(IB,2),K) = XFLUX_ADV(N_DAM_MATCH(IB,2),K) - (EXFLUX-FXX-FYY)
467            XFLUX_ADV(N_DAM_MATCH(IB,3),K) = XFLUX_ADV(N_DAM_MATCH(IB,3),K) - (EXFLUX-FXX-FYY)
468            XFLUX_ADV(N_DAM_MATCH(IB,4),K) = XFLUX_ADV(N_DAM_MATCH(IB,4),K) - (EXFLUX-FXX-FYY)
469          END IF
470        END IF
471 #      endif
472      end do
473   end do !!sigma loop
474 
475 !---------------------------------------------------------------------------------
476 ! Accumulate Fluxes at Boundary Nodes
477 !---------------------------------------------------------------------------------
478  
479 # if defined (MULTIPROCESSOR)
480   if(par)call node_match(0,nbn,bn_mlt,bn_loc,bnc,mt,kb,myid,nprocs,xflux,xflux_adv)
481 # endif
482 
483 !---------------------------------------------------------------------------------
484 ! Store Advective Fluxes at the Boundary
485 !---------------------------------------------------------------------------------
486   do k=1,kbm1
487      if(iobcn > 0) then
488        do i=1,iobcn
489          i1=i_obc_n(i)
490          fflux_obc(i,k)=xflux_adv(i1,k)
491        end do
492      end if
493   end do
494 
495 !---------------------------------------------------------------------------------
496 ! Calculate Vertical Advection Terms 
497 !---------------------------------------------------------------------------------
498 
499    do i=1,m 
500 #    if defined (WET_DRY)
501      if(iswetn(i)*iswetnt(i) == 1) then
502 #    endif
503 #    if defined (THIN_DAM)
504      if(IS_DAM(I)==1)then
505        wvel(1:kb)=0.0_sp
506        call calc_vflux(kbm1,f(i,1:kbm1),wvel(1:kb),vflux)
507      else
508        call calc_vflux(kbm1,f(i,1:kbm1),wts(i,1:kb),vflux)
509      end if
510 #    else
511      call calc_vflux(kbm1,f(i,1:kbm1),wts(i,1:kb),vflux)
512 #    endif
513 
514      do k=1,kbm1
515        if(isonb(i) == 2) then
516          xflux(i,k)= (vflux(k)-vflux(k+1))*art1(i)/dz(i,k)
517        else
518          xflux(i,k)=xflux(i,k)+ (vflux(k)-vflux(k+1))*art1(i)/dz(i,k)
519        end if
520 #    if defined (THIN_DAM)
521        IF(IS_DAM(I)==1.AND.K<=KDAM(I))THEN
522          tmpflx = (vflux(k)-vflux(k+1))*art1(i)/dz(i,k)
523          IF(N_DAM_MATCH(I,1)==1)THEN
524             XFLUX(N_DAM_MATCH(I,2),K) = XFLUX(N_DAM_MATCH(I,2),K)+tmpflx
525          END IF
526          IF(N_DAM_MATCH(I,1)==2)THEN
527             XFLUX(N_DAM_MATCH(I,2),K) = XFLUX(N_DAM_MATCH(I,2),K)+tmpflx
528             XFLUX(N_DAM_MATCH(I,3),K) = XFLUX(N_DAM_MATCH(I,3),K)+tmpflx
529          END IF
530          IF(N_DAM_MATCH(I,1)==3)THEN
531             XFLUX(N_DAM_MATCH(I,2),K) = XFLUX(N_DAM_MATCH(I,2),K)+tmpflx
532             XFLUX(N_DAM_MATCH(I,3),K) = XFLUX(N_DAM_MATCH(I,3),K)+tmpflx
533             XFLUX(N_DAM_MATCH(I,4),K) = XFLUX(N_DAM_MATCH(I,4),K)+tmpflx
534          END IF                
535        END IF
536 #    endif
537      end do
538 #    if defined (WET_DRY)
539      end if
540 #    endif
541    end do
542 
543 !-------------------------------------------------------
544 !Point Source                                      
545 !-------------------------------------------------------
546   if(source)then  !!user specified
547 
548   if(RIVER_TS_SETTING == 'calculated') then
549     if(RIVER_INFLOW_LOCATION == 'node') then
550         do j=1,numqbc
551           jj=inodeq(j)
552           fpoint=fdis(j)
553           do k=1,kbm1
554             xflux(jj,k)=xflux(jj,k) - qdis(j)*vqdist(j,k)*fpoint !/dz(jj,k)
555           end do
556         end do
557     else if(RIVER_INFLOW_LOCATION == 'edge') then
558       write(*,*)'scalar advection not setup for "edge" point source'
559       stop
560     end if
561   end if
562 
563   else
564 
565   if(RIVER_TS_SETTING == 'calculated') then
566     if(RIVER_INFLOW_LOCATION == 'node') then
567         do j=1,numqbc
568           jj=inodeq(j)
569           do k=1,kbm1
570             fpoint = f(jj,k)
571             xflux(jj,k)=xflux(jj,k) - qdis(j)*vqdist(j,k)*fpoint !/dz(jj,k)
572           end do
573         end do
574     else if(RIVER_INFLOW_LOCATION == 'edge') then
575       write(*,*)'scalar advection not setup for "edge" point source'
576       stop
577     end if
578   end if
579 
580   endif
581 !------------------------------------------------------------------------
582 !Update Scalar Quantity
583 !------------------------------------------------------------------------
584 
585   do i=1,m
586 #   if defined (WET_DRY)
587     if(iswetn(i)*iswetnt(i) == 1 )then
588 #   endif
589     do k=1,kbm1
590 #   if !defined (THIN_DAM)
591       fn(i,k)=(f(i,k)-xflux(i,k)/art1(i)*(deltat/dt(i)))*(dt(i)/dtfa(i))
592 #   else
593       IF(IS_DAM(I)==1.AND.K<=KDAM(I))THEN
594         fn(i,k)=(f(i,k)-xflux(i,k)/(ART1(I)&
595         &+SUM(ART1(N_DAM_MATCH(I,2:1+N_DAM_MATCH(I,1)))))*(deltat/dt(i)))*(dt(i)/dtfa(i))
596       ELSE
597         fn(i,k)=(f(i,k)-xflux(i,k)/art1(i)*(deltat/dt(i)))*(dt(i)/dtfa(i))
598       END IF
599 #   endif
600     end do
601 #   if defined (WET_DRY)
602     else
603     do k=1,kbm1
604       fn(i,k)=f(i,k)
605     end do
606     end if
607 #   endif
608   end do
609 
610   return
611   End Subroutine Adv_Scal
612 !==============================================================================|
613 
614 !==============================================================================|
615 ! Vertical Diffusion of Scalar                                                 |
616 !==============================================================================|
617   Subroutine Vdif_Scal(f,deltat)
618 
619   use mTridiagonal
620   use all_vars 
621 # if defined (THIN_DAM)
622   use mod_dam,only : NODE_DAM1_N,NODE_DAM2_N,NODE_DAM3_N, &
623                    &I_NODE_DAM1_N,I_NODE_DAM2_N,I_NODE_DAM3_N, &
624                    &kdam
625 # endif
626 
627   Implicit None 
628   Real(sp), intent(inout) :: f(0:mt,kb)
629   Real(sp), intent(in   ) :: deltat
630   !--local--------------------
631   integer  :: i,k,ll
632   real(sp) :: dsqrd,dfdz,visb
633   real(sp) :: fsol(0:kb)
634 
635 # if defined (THIN_DAM)
636   real(sp) :: ftmp,stmp
637 # endif
638 
639   call init_tridiagonal(kb)
640 
641   Do i=1,m
642      dsqrd = d(i)*d(i)
643 
644     !----------------------------------------------------------------
645     !  Set up Diagonals of Matrix (lower=au,diag=bu,upper=cu)
646     !----------------------------------------------------------------
647     
648 
649     !Surface
650     au(1) = 0.0
651     cu(1)=      - deltat*(kh(i,2)+umol)/(dzz(i,1)*dz(i,1)*dsqrd)
652     bu(1)=  1.0 - cu(1) 
653 
654     !Interior
655     do k=2,kbm1-1
656       au(k) =     - deltat*(kh(i,k  )+umol)/(dzz(i,k-1)*dz(i,k)*dsqrd)
657       cu(k) =     - deltat*(kh(i,k+1)+umol)/(dzz(i,k  )*dz(i,k)*dsqrd)
658       bu(k) = 1.0 - cu(k) - au(k) 
659     end do
660 
661     !Bottom
662      au(kbm1) =     - deltat*(kh(i,kbm1)+umol)/(dzz(i,kbm1-1)*dz(i,kbm1)*dsqrd)
663      cu(kbm1) = 0.0
664      bu(kbm1) = 1.0 - au(kbm1) 
665 
666     !----------------------------------------------------------------
667     ! Set up RHS forcing vector and boundary conditions 
668     !----------------------------------------------------------------
669     do k=1,kbm1
670       du(k) = f(i,k)
671     end do
672 
673     !Free Surface: No flux
674 
675     !Bottom: No flux
676       
677 
678     !----------------------------------------------------------------
679     ! Solve 
680     !----------------------------------------------------------------
681 
682      call tridiagonal(kb,1,kbm1,fsol)
683     
684      !Transfer
685      f(i,1:kbm1) = fsol(1:kbm1)
686 
687   End Do
688 
689 #  if defined (THIN_DAM)
690    DO K=1,KBM1
691      DO I=1,NODE_DAM1_N
692        IF(K<=KDAM(I_NODE_DAM1_N(I,1)).AND.K<=KDAM(I_NODE_DAM1_N(I,2)) )THEN
693           FTMP=F(I_NODE_DAM1_N(I,1),K)*ART1(I_NODE_DAM1_N(I,1)) &
694             & +F(I_NODE_DAM1_N(I,2),K)*ART1(I_NODE_DAM1_N(I,2))
695           STMP=ART1(I_NODE_DAM1_N(I,1))+ART1(I_NODE_DAM1_N(I,2))
696           F(I_NODE_DAM1_N(I,1),K)=FTMP/STMP
697           F(I_NODE_DAM1_N(I,2),K)=FTMP/STMP
698        END IF
699      END DO
700 
701      DO I=1,NODE_DAM2_N
702        IF(K<=KDAM(I_NODE_DAM2_N(I,1)).AND.K<=KDAM(I_NODE_DAM2_N(I,2)) &
703           & .AND.K<=KDAM(I_NODE_DAM2_N(I,2)) )THEN
704           FTMP= F(I_NODE_DAM2_N(I,1),K)*ART1(I_NODE_DAM2_N(I,1)) &
705            &   +F(I_NODE_DAM2_N(I,2),K)*ART1(I_NODE_DAM2_N(I,2)) &
706            &   +F(I_NODE_DAM2_N(I,3),K)*ART1(I_NODE_DAM2_N(I,3)) 
707           STMP=ART1(I_NODE_DAM2_N(I,1))+ART1(I_NODE_DAM2_N(I,2)) &
708            &   +ART1(I_NODE_DAM2_N(I,3))
709           F(I_NODE_DAM2_N(I,1),K)=FTMP/STMP
710           F(I_NODE_DAM2_N(I,2),K)=FTMP/STMP
711           F(I_NODE_DAM2_N(I,3),K)=FTMP/STMP
712        END IF
713      END DO
714 
715      DO I=1,NODE_DAM3_N
716        IF(K<=KDAM(I_NODE_DAM3_N(I,1)).AND.K<=KDAM(I_NODE_DAM3_N(I,2)) &
717    & .AND.K<=KDAM(I_NODE_DAM3_N(I,3)).AND.K<=KDAM(I_NODE_DAM3_N(I,4)) )THEN
718           FTMP =F(I_NODE_DAM3_N(I,1),K)*ART1(I_NODE_DAM3_N(I,1)) &
719            &   +F(I_NODE_DAM3_N(I,2),K)*ART1(I_NODE_DAM3_N(I,2)) &
720            &   +F(I_NODE_DAM3_N(I,3),K)*ART1(I_NODE_DAM3_N(I,3)) &
721            &   +F(I_NODE_DAM3_N(I,4),K)*ART1(I_NODE_DAM3_N(I,4))  
722           STMP =ART1(I_NODE_DAM3_N(I,1)) + ART1(I_NODE_DAM3_N(I,2)) &
723            &  + ART1(I_NODE_DAM3_N(I,3)) + ART1(I_NODE_DAM3_N(I,4))
724           F(I_NODE_DAM3_N(I,1),K)=FTMP/STMP
725           F(I_NODE_DAM3_N(I,2),K)=FTMP/STMP
726           F(I_NODE_DAM3_N(I,3),K)=FTMP/STMP
727           F(I_NODE_DAM3_N(I,4),K)=FTMP/STMP
728        END IF
729      END DO
730    END DO
731 #  endif
732 
733 
734   End Subroutine Vdif_Scal
735 
736 
737 !==============================================================================|
738 ! Set Point Source Conditions for Scalar Function                              |
739 !==============================================================================|
740 
741   Subroutine Bcond_Scal_PTsource(f,fn,fdis)
742 
743 !------------------------------------------------------------------------------|
744   use all_vars
745   use bcs
746   use mod_obcs
747   implicit none
748   real(sp), intent(in ), dimension(0:mt,kb)      :: f 
749   real(sp), intent(out), dimension(0:mt,kb)      :: fn
750   real(sp), intent(in ), dimension(numqbc )      :: fdis
751 !--local-------------------------------------------
752   integer  :: i,j,k,j1,j11,j22
753 !------------------------------------------------------------------------------|
754 
755 
756 !--------------------------------------------
757 ! Set Source Terms
758 !--------------------------------------------
759   if(RIVER_TS_SETTING == 'specified') then
760     if(numqbc > 0) then
761       if(RIVER_INFLOW_LOCATION == 'node') then
762         do i=1,numqbc
763           j11=inodeq(i)
764           do k=1,kbm1
765             fn(j11,k)=fdis(i)
766           end do
767         end do
768       else if(RIVER_INFLOW_LOCATION == 'edge') then
769         do i=1,numqbc
770           j11=n_icellq(i,1)
771           j22=n_icellq(i,2)
772           do k=1,kbm1
773             fn(j11,k)=fdis(i)
774             fn(j22,k)=fdis(i)
775           end do
776         end do
777       end if
778     end if
779   end if
780 
781   return
782   End Subroutine Bcond_Scal_PTSource 
783 !==============================================================================|
784 !==============================================================================|
785 
786 !==============================================================================|
787 !   Set Boundary Conditions for Scalar Function on Open Boundary               |
788 !==============================================================================|
789 
790   Subroutine Bcond_Scal_OBC(f,fn,fflux_obc,f_obc,deltat,alpha_nudge)
791 
792 !------------------------------------------------------------------------------|
793   use all_vars
794   use bcs
795   use mod_obcs
796   implicit none
797   real(sp), intent(in   ), dimension(0:mt,kb)      :: f 
798   real(sp), intent(inout), dimension(0:mt,kb)      :: fn
799   real(sp), intent(in   ), dimension(iobcn+1,kbm1) :: fflux_obc 
800   real(sp), intent(in   ), dimension(iobcn       ) :: f_obc 
801   real(sp), intent(in   )                          :: deltat
802   real(sp), intent(in   )                          :: alpha_nudge 
803 !--local-------------------------------------------
804   real(sp) :: f2d,f2d_next,f2d_obc,xflux2d,tmp
805   integer  :: i,j,k,j1,j11,j22
806 !------------------------------------------------------------------------------|
807        
808 !--------------------------------------------
809 ! Set Scalar Value on Open Boundary
810 !--------------------------------------------
811   if(iobcn > 0) then
812     do i=1,iobcn
813       j=i_obc_n(i)
814       j1=next_obc(i)
815       f2d=0.0_sp
816       f2d_next=0.0_sp
817       xflux2d=0.0_sp
818       do k=1,kbm1
819         f2d=f2d+f(j,k)*dz(j,k)
820         f2d_next=f2d_next+fn(j1,k)*dz(j1,k)
821         xflux2d=xflux2d+fflux_obc(i,k)*dz(j,k)
822       end do
823   
824       if(uard_obcn(i) > 0.0_sp) then
825         tmp=xflux2d+f2d*uard_obcn(i)
826         f2d_obc=(f2d*dt(j)-tmp*deltat/art1(j))/d(j)
827         do k=1,kbm1
828           fn(j,k)=fn(j1,k) !f2d_obc+(fn(j1,k)-f2d_next)
829         end do
830       else
831         do k=1,kbm1
832           fn(j,k) = f(j,k)-alpha_nudge*(f(j,k)-f_obc(i))
833         end do
834       end if
835     end do
836   endif
837 
838   return
839   End Subroutine Bcond_Scal_OBC 
840 !==============================================================================|
841 !==============================================================================|
842 
843   Subroutine fct_sed(f,fn)
844   !==============================================================================|
845   USE ALL_VARS
846   USE MOD_UTILS
847   USE BCS
848   USE MOD_OBCS
849   IMPLICIT NONE
850   real(sp), intent(inout), dimension(0:mt,kb)      :: fn
851   real(sp), intent(in), dimension(0:mt,kb)      :: f
852   REAL(SP):: SMAX,SMIN
853   INTEGER :: I,J,K,K1
854   !==============================================================================|
855   IF(DBG_SET(DBG_SBR)) WRITE(IPT,*)"Start: fct_sed"
856 
857   nodes: DO I=1,M
858 
859      ! SKIP OPEN BOUNDARY NODES
860      IF(IOBCN > 0)THEN
861         DO J=1,IOBCN
862            IF(I == I_OBC_N(J)) CYCLE nodes
863         END DO
864      END IF
865 
866      ! SKIP RIVER INFLOW POINTS
867      IF(NUMQBC > 0)THEN
868         DO J=1,NUMQBC
869            IF(RIVER_INFLOW_LOCATION == 'node')THEN
870               IF(I == INODEQ(J)) CYCLE nodes
871            END IF
872            IF(RIVER_INFLOW_LOCATION == 'edge')THEN
873               IF(I == N_ICELLQ(J,1) .OR. I == N_ICELLQ(J,2)) CYCLE nodes
874            END IF
875         END DO
876      END IF
877 
878      ! SKIP GROUND WATER INFLOW POINTS
879      IF(BFWDIS(I) .GT. 0.0_SP .and. GROUNDWATER_SALT_ON) CYCLE nodes
880 
881      K1 = 1
882      IF(PRECIPITATION_ON) K1 = 2
883 !     DO K=1,KBM1
884      DO K=K1,KBM1
885         SMAX = MAXVAL(f(NBSN(I,1:NTSN(I)),K))
886         SMIN = MINVAL(f(NBSN(I,1:NTSN(I)),K))
887 
888         IF(K == 1)THEN
889            SMAX = MAX(SMAX,(f(I,K)*DZ(I,K+1)+f(I,K+1)*DZ(I,K))/  &
890                 (DZ(I,K)+DZ(I,K+1)))
891            SMIN = MIN(SMIN,(f(I,K)*DZ(I,K+1)+f(I,K+1)*DZ(I,K))/  &
892                 (DZ(I,K)+DZ(I,K+1)))
893         ELSE IF(K == KBM1)THEN
894            SMAX = MAX(SMAX,(f(I,K)*DZ(I,K-1)+f(I,K-1)*DZ(I,K))/  &
895                 (DZ(I,K)+DZ(I,K-1)))
896            SMIN = MIN(SMIN,(f(I,K)*DZ(I,K-1)+f(I,K-1)*DZ(I,K))/  &
897                 (DZ(I,K)+DZ(I,K-1)))
898         ELSE
899            SMAX = MAX(SMAX,(f(I,K)*DZ(I,K-1)+f(I,K-1)*DZ(I,K))/  &
900                 (DZ(I,K)+DZ(I,K-1)),                             &
901                 (f(I,K)*DZ(I,K+1)+f(I,K+1)*DZ(I,K))/           &
902                 (DZ(I,K)+DZ(I,K+1)))
903            SMIN = MIN(SMIN,(f(I,K)*DZ(I,K-1)+f(I,K-1)*DZ(I,K))/  &
904                 (DZ(I,K)+DZ(I,K-1)),                             &
905                 (f(I,K)*DZ(I,K+1)+f(I,K+1)*DZ(I,K))/           &
906                 (DZ(I,K)+DZ(I,K+1)))
907         END IF
908 
909         IF(SMIN-fn(I,K) > 0.0_SP)fn(I,K) = SMIN
910         IF(fn(I,K)-SMAX > 0.0_SP)fn(I,K) = SMAX
911 
912      END DO
913   END DO nodes
914 
915   WHERE(fn < 0.0_SP)fn=0.0_SP
916   
917   IF(DBG_SET(DBG_SBR)) WRITE(IPT,*)"End: fct_sed"
918   End Subroutine fct_sed
919 
920 !==========================================================================
921 ! Calculate Fluxes for Vertical Advection Equation                            
922 ! n: number of cells
923 ! c: scalar variable (1:n)
924 ! w: velocity field at cell interfaces (1:n+1)
925 ! note:  we dont use face normals to construct inflow/outflow
926 !        thus we add dissipation term instead of subtracting because 
927 !        positive velocity is up while computational coordinates increase
928 !        down towards bottom.  
929 !==========================================================================
930   Subroutine Calc_VFlux(n,c,w,flux) 
931   use mod_prec
932   implicit none
933   integer , intent(in ) :: n
934   real(sp), intent(in ) ::  c(n)
935   real(sp), intent(in ) ::  w(n+1) 
936   real(sp), intent(out) ::  flux(n+1)
937   real(sp) :: conv(n+1),diss(n+1)
938   real(sp) :: cin(-1:n+2)
939   real(sp) :: dis4
940   integer  :: i
941 
942   !transfer to working array
943   cin(1:n) = c(1:n)
944 
945   !surface bcs (no flux)
946   cin(0)  =  -cin(1) 
947   cin(-1) =  -cin(2)
948   
949   !bottom bcs (no flux)
950   cin(n+1) = -cin(n) 
951   cin(n+2) = -cin(n-1)
952 
953   !flux computation
954   do i=1,n+1
955     dis4    = .5*abs(w(i))
956     conv(i) = w(i)*(cin(i)+cin(i-1))/2. 
957     diss(i) = dis4*(cin(i)-cin(i-1)-lim(cin(i+1)-cin(i),cin(i-1)-cin(i-2))) 
958     flux(i) = conv(i)+diss(i)
959   end do
960 
961   End Subroutine Calc_VFlux
962   
963 !==========================================================================
964 ! Calculate LED Limiter L(u,v)  
965 !==========================================================================
966   Function Lim(a,b)
967   use mod_prec
968   real(sp) lim,a,b
969   real(sp) q,R
970   real(sp) eps
971   eps = epsilon(eps)
972   
973   q = 0. !1st order
974   q = 1. !minmod
975   q = 2. !van leer
976 
977   R = abs(   (a-b)/(abs(a)+abs(b)+eps) )**q
978   lim = .5*(1-R)*(a+b)
979 
980   End Function Lim
981 
982 
983 End Module Scalar
View Code

 

为了更快速的了解计算过程,自己设置了一个只有7个节点、6个单元的简单地形,如下图所示,然后通过 printf 的方法快速了解每个变量含义。

SUNTANS 及 FVCOM 对流扩散方程求解简介[TBC]_第1张图片

有限体积法离散控制方程(理论)

首先介绍 FVCOM 控制方程离散,虽然其也是按照有限体积方法思想将积分降维,但是只是在平面二维方向上使用有限体积法,垂向计算使用的是有限差分法。

控制方程

 控制方程离散过程

SUNTANS 及 FVCOM 对流扩散方程求解简介[TBC]_第2张图片

最终更新标量值Ci的程序为: fn(i,k)=(f(i,k)-xflux(i,k)/art1(i)*(deltat/dt(i)))*(dt(i)/dtfa(i))

这里deltat表示时间步长,dt为上个时间步水深,dtfa为新计算水深,这里之所以需要除以水深是因为垂向梯度项计算需要。

数值求解(结合程序分析)

首先说一下 FVCOM 选取控制体的方法,如下图所示。例如节点1所在控制体,就是由下边4条红线和上边2条黑线所组成的6面体,而节点6则是由周围12条红线组成。

SUNTANS 及 FVCOM 对流扩散方程求解简介[TBC]_第3张图片

FVCOM计算时候也不是按照控制体进行循环,而是按照控制边的个数循环,也就是说,像节点1和节点6这种相邻控制体,两条红色邻边各只计算一次,控制边的通量在节点1和6控制体内是大小相同、符号相反的。

1. 水平对流项计算

水平对流项 

i1=ntrg(i) dtij(i)=dt1(i1) do k=1,kbm1 uvn(i,k) = v(i1,k)*dltxe(i) - u(i1,k)*dltye(i) end do exflux=-un*dtij(i)* ((1.0_sp+sign(1.0_sp,un))*fij2+(1.0_sp-sign(1.0_sp,un))*fij1)*0.5_sp+fxx+fyy

 这里前面一项 -un*dtij(i)*((1.0_sp+sign(1.0_sp,un))*fij2+(1.0_sp-sign(1.0_sp,un))*fij1)*0.5_sp 毫无疑问就是水平对流项,((1.0_sp+sign(1.0_sp,un))*fij2+(1.0_sp-sign(1.0_sp,un))*fij1)*0.5_sp 表示其采用的是迎风格式,控制边上 fij1 及 fij2 计算采用泰勒公式达到2阶精度,泰勒公式中的一阶偏导计算在后面统一介绍

SUNTANS 及 FVCOM 对流扩散方程求解简介[TBC]_第4张图片

2. 水平扩散项计算

FVCOM水平扩散项计算

 

       txx=0.5_sp*(pfpxd(ia)+pfpxd(ib))*viscof
       tyy=0.5_sp*(pfpyd(ia)+pfpyd(ib))*viscof

       fxx=-dtij(i)*txx*dltye(i)
       fyy= dtij(i)*tyy*dltxe(i)

       exflux=-un*dtij(i)* &
          ((1.0_sp+sign(1.0_sp,un))*fij2+(1.0_sp-sign(1.0_sp,un))*fij1)*0.5_sp+fxx+fyy

其中 viscof 为水平扩散系数,一阶偏导采用控制边相邻两个节点平均值。 fxx 和 fyy 中还包含了水深dtij,后面会在计算流量时除去。

       exflux=-un*dtij(i)* &
          ((1.0_sp+sign(1.0_sp,un))*fij2+(1.0_sp-sign(1.0_sp,un))*fij1)*0.5_sp+fxx+fyy

       xflux(ia,k)=xflux(ia,k)+exflux
       xflux(ib,k)=xflux(ib,k)-exflux


       fn(i,k)=(f(i,k)-xflux(i,k)/art1(i)*(deltat/dt(i)))*(dt(i)/dtfa(i))

3. 一阶偏导项计算

一阶偏导计算也采用格林公式将面积分降维化为线积分计算,但是平面积分所采用的控制体和上面不同,这里采用和节点相邻的所有三角形单元计算,对于边界点来说,只取相邻的两个单元。

SUNTANS 及 FVCOM 对流扩散方程求解简介[TBC]_第5张图片

对应的程序如下

         pfpx(i) = pfpx(i) +ff1*(vy(i1)-vy(i2))
         pfpy(i) = pfpy(i) +ff1*(vx(i2)-vx(i1))
         pfpxd(i)= pfpxd(i)+ffd*(vy(i1)-vy(i2))
         pfpyd(i)= pfpyd(i)+ffd*(vx(i2)-vx(i1))

        ……


         PFPX(I)=PFPX(I)/ART2(I)
         PFPY(I)=PFPY(I)/ART2(I)
         PFPXD(I)=PFPXD(I)/ART2(I)
         PFPYD(I)=PFPYD(I)/ART2(I)

 对于水平对流项中控制边上Ci的二阶精度计算,只需按照泰勒公式计算即可

       fij1=f(ia,k)+dxa*pfpx(ia)+dya*pfpy(ia)
       fij2=f(ib,k)+dxb*pfpx(ib)+dyb*pfpy(ib)

 

 

 

 

 

 

 

 

 

转载于:https://www.cnblogs.com/li12242/p/4003350.html

你可能感兴趣的:(SUNTANS 及 FVCOM 对流扩散方程求解简介[TBC])