STM32F072从零配置工程-基于HAL库的串口UART中断配置

先上一个采用串口直接传输的Demo;

此处的思路是完全采用HAL库来实现的,核心是运用HAL_UART_Transmit_IT和HAL_UART_Receive_IT两个函数来实现的,可以作为一个Demo来测试使用;

直接上代码,其串口的配置和上一章完全一致,因此忽略不计:

       思路大致是将aTxStartMessage字符串发送出去,接收一个总长度为15个字符的数据到aRxBuffer中,等待接收完毕;

       将接收到的aRxBuffer发送出去,等待发送完成,最后将aTxEndMessage发送出去;

uint8_t aTxStartMessage[] = "\r\n ****UART-Hyperterminal communication based on IT ****\r\n Enter 9 characters using keyboard :\r\n";
uint8_t aTxEndMessage[] = "\r\n Example Finished\r\n";

/* Buffer used for reception */
uint8_t aRxBuffer[18];
  
  while (1)
  {
    if(HAL_UART_Transmit_IT(&huart2, (uint8_t*)aTxStartMessage, sizeof(aTxStartMessage)) != HAL_OK)
    {
        while(1);
    }
    if(HAL_UART_Receive_IT(&huart2, (uint8_t*)aRxBuffer, 15) != HAL_OK)
    {
        while(1);
    }
    while(HAL_UART_GetState(&huart2) != HAL_UART_STATE_READY);
    if(HAL_UART_Transmit_IT(&huart2, (uint8_t*)aRxBuffer, 15) != HAL_OK)
    {
        while(1);
    }
    while(HAL_UART_GetState(&huart2) != HAL_UART_STATE_READY);
    if(HAL_UART_Transmit_IT(&huart2, (uint8_t*)aTxEndMessage, sizeof(aTxEndMessage)) != HAL_OK)
    {
        while(1);
    }
    while(HAL_UART_GetState(&huart2) != HAL_UART_STATE_READY);
  }

 

 

接下来是也是一个Demo,采用HAL库来实现串口收发中断,思路和C一个一个接收字符然后发送出去是相似的,只不过是采用串口IT中断来实现;

  串口的配置不变,因此在此忽略不计;

uint8_t aRxBuffer;

int main(void)
{
  HAL_Init();
  SystemClock_Config();
  MX_GPIO_Init();
  MX_USART2_UART_Init();
  
  HAL_UART_Receive_IT(&huart3, &aRxBuffer, 1);
  
  while (1)
  {}
}

void USART2_IRQHandler(void)
{
  HAL_UART_IRQHandler(&huart2);
}

void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandler)
{
    HAL_UART_Transmit(&huart3, &aRxBuffer, 1, 0);
    HAL_UART_Receive_IT(&huart3, &aRxBuffer, 1);
}

 

 

简要分析以下这个程序的思路:

       开头采用HAL_UART_Receive_IT()这个函数和目的不是为了接收数据,而是通过里面的配置开启中断,核心在SET_BIT()这两句话中(开启EIE、PEIE和RXNEIE这三个中断);

HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
{
  /* Check that a Rx process is not already ongoing */
  if(huart->RxState == HAL_UART_STATE_READY)
  {
    if((pData == NULL ) || (Size == 0U))
    {
      return HAL_ERROR;
    }
    /* In case of 9bits/No Parity transfer, pData buffer provided as input paramter 
       should be aligned on a u16 frontier, as data to be received from RDR will be 
       handled through a u16 cast. */
    if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
    {
      if((((uint32_t)pData)&1U) != 0U)
      {
        return  HAL_ERROR;
      }
    }

    /* Process Locked */
    __HAL_LOCK(huart);

    huart->pRxBuffPtr = pData;
    huart->RxXferSize = Size;
    huart->RxXferCount = Size;

    /* Computation of UART mask to apply to RDR register */
    UART_MASK_COMPUTATION(huart);

    huart->ErrorCode = HAL_UART_ERROR_NONE;
    huart->RxState = HAL_UART_STATE_BUSY_RX;

    /* Process Unlocked */
    __HAL_UNLOCK(huart);

    /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
    SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
    /* Enable the UART Parity Error and Data Register not empty Interrupts */
    SET_BIT(huart->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE);
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

 

 

接收数据的过程可以从中断中了解:

       当接收到数据后判断ISR寄存器中RXNE中断标志是否置位和CR1寄存器中RXNE中断使能是否开启,然后进入到接收处理函数UART_Receive_IT()中;

       在UART_Receive_IT()中,关闭EIE、PEIE和RXNE中断,同时调用回调函数HAL_UART_RxCpltCallback();

void USART2_IRQHandler(void)
{
  HAL_UART_IRQHandler(&huart2);
}

void HAL_UART_IRQHandler(UART_HandleTypeDef *huart)
{

  /* If some errors occur */
  cr3its = READ_REG(huart->Instance->CR3);
  if(   (errorflags != RESET)
     && (   ((cr3its & USART_CR3_EIE) != RESET)
         || ((cr1its & (USART_CR1_RXNEIE | USART_CR1_PEIE)) != RESET)) )
  {
    
    /* Call UART Error Call back function if need be --------------------------*/
    if(huart->ErrorCode != HAL_UART_ERROR_NONE)
    {
      /* UART in mode Receiver ---------------------------------------------------*/
      if(((isrflags & USART_ISR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET))
      {
        UART_Receive_IT(huart);
      }
    }
    return;
  } /* End if some error occurs */
}

HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart)
{
  /* Check that a Rx process is ongoing */
  if(huart->RxState == HAL_UART_STATE_BUSY_RX)
  {
    if(--huart->RxXferCount == 0U)
    {
      /* Disable the UART Parity Error Interrupt and RXNE interrupt*/
      CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));

      /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
      CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);

      /* Rx process is completed, restore huart->RxState to Ready */
      huart->RxState = HAL_UART_STATE_READY;

      HAL_UART_RxCpltCallback(huart);

      return HAL_OK;
    }
  }
}

 

 

在主函数中执行重写的回调函数:

       将接收到的一个字符发送出去,同时开启接收中断准备接收下一个字符;

void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandler)
{
    HAL_UART_Transmit(&huart3, &aRxBuffer, 1, 0);
    HAL_UART_Receive_IT(&huart3, &aRxBuffer, 1);
}

 

 

其实现的功能可以和以下C语言实现的相似:

int c;
while((c = getchar()) != EOF)
{
    putchar(c);
}

 

转载于:https://www.cnblogs.com/lpfdezh/p/11213115.html

你可能感兴趣的:(嵌入式,c/c++)