无穷积分 ∫e^(-x^2)dx 的几种巧妙解法

目录:

      • 1. 极坐标变换
      • 2. 几何做法(一)
      • 3. 几何做法(二)
      • 4. 拉普拉斯变换
      • 5. 变量代换(一)
      • 6. 变量代换(二)
      • 7. 构造含参变量函数
      • 8. Wallis 公式

   ∫ − ∞ ∞ e − x 2 d x \displaystyle\int_{-\infin}^{\infin}e^{-x^2}dx ex2dx 是一个比较常见的无穷积分,在许多领域有着重要应用。

  在此介绍几种巧妙的解法,供读者欣赏。 为了您更好的阅读体验,请使用电脑浏览。

1. 极坐标变换

   ( ∫ − ∞ ∞ e − x 2 d x ) 2 = ∫ − ∞ ∞ e − x 2 d x ∫ − ∞ ∞ e − y 2 d y = ∫ − ∞ ∞ ∫ − ∞ ∞ e − ( x 2 + y 2 ) d x d y ( 极坐标变换 ) = ∫ 0 2 π ∫ 0 ∞ e − r 2 r d r d θ = ( ∫ 0 2 π d θ ) ( 1 2 ∫ 0 ∞ e − r 2 d r 2 ) = 2 π 1 2 = π ∴    ∫ − ∞ ∞ e − x 2 d x = π   . \begin{aligned}\big(\int_{-\infin}^{\infin}e^{-x^2}dx\big)^2&=\int_{-\infin}^{\infin}e^{-x^2}dx\int_{-\infin}^{\infin}e^{-y^2}dy\\&=\int_{-\infin}^{\infin}\int_{-\infin}^{\infin}e^{-(x^2+y^2)}dxdy \quad(\textbf{极坐标变换})\\&=\int_{0}^{2\pi}\int_{0}^{\infin}e^{-r^2}rdrd\theta\\&=\big(\int_{0}^{2\pi}d\theta\big)\big(\frac{1}{2}\int_{0}^{\infin}e^{-r^2}dr^2\big)\\&=2\pi\frac{1}{2}=\pi\\ \therefore \,\,\int_{-\infin}^{\infin}e^{-x^2}dx&=\sqrt{\pi}\,.\end{aligned} (ex2dx)2ex2dx=ex2dxey2dy=e(x2+y2)dxdy(极坐标变换)=02π0er2rdrdθ=(02πdθ)(210er2dr2)=2π21=π=π .

2. 几何做法(一)

无穷积分 ∫e^(-x^2)dx 的几种巧妙解法_第1张图片

S 1 = { ( x , y )   ∣   x 2 + y 2 ≤ R 2 } S 2 = { ( x , y )   ∣   0 ≤ x ≤ R ,   0 ≤ y ≤ R } S 3 = { ( x , y )   ∣   x 2 + y 2 ≤ 2 R 2 }   \begin{aligned}S_1&=\{(x,y)\,|\,x^2+y^2\leq R^2\}\\S_2&=\{(x,y)\,|\,0\leq x \leq R,\,0\leq y \leq R\}\\S_3&=\{(x,y)\,|\,x^2+y^2\leq 2R^2\}\\\,\end{aligned} S1S2S3={(x,y)x2+y2R2}={(x,y)0xR,0yR}={(x,y)x2+y22R2}     ( ∫ 0 R e − x 2 d x ) 2 = ∫ 0 R e − x 2 d x ∫ 0 R e − y 2 d y = ∫ 0 R ∫ 0 R e − ( x 2 + y 2 ) d x d y = ∬ S 2 e − ( x 2 + y 2 ) d x d y \begin{aligned}\big(\int_{0}^{R}e^{-x^2}dx\big)^2&=\int_{0}^{R}e^{-x^2}dx\int_{0}^{R}e^{-y^2}dy\\&=\int_{0}^{R}\int_{0}^{R}e^{-(x^2+y^2)}dxdy\\&=\iint_{S_2}e^{-(x^2+y^2)}dxdy\end{aligned} (0Rex2dx)2=0Rex2dx0Rey2dy=0R0Re(x2+y2)dxdy=S2e(x2+y2)dxdy

   ∵ e − ( x 2 + y 2 ) ≥ 0 ∴ ∬ S 1 e − ( x 2 + y 2 ) d x d y ≤ ∬ S 2 e − ( x 2 + y 2 ) d x d y ≤ ∬ S 3 e − ( x 2 + y 2 ) d x d y \begin{aligned}&\because e^{-(x^2+y^2)}\geq 0 \\ &\therefore \iint_{S_1}e^{-(x^2+y^2)}dxdy\leq\iint_{S_2}e^{-(x^2+y^2)}dxdy\leq\iint_{S_3}e^{-(x^2+y^2)}dxdy\end{aligned} e(x2+y2)0S1e(x2+y2)dxdyS2e(x2+y2)dxdyS3e(x2+y2)dxdy

    ∬ S 1 e − ( x 2 + y 2 ) d x d y = ∫ 0 π / 2 ∫ 0 R e − r 2 r d r d θ = ( ∫ 0 π / 2 d θ ) ( 1 2 ∫ 0 R e − r 2 d r 2 ) = π 4 ( 1 − e − R 2 ) \begin{aligned}\iint_{S_1}e^{-(x^2+y^2)}dxdy&=\int_{0}^{\pi/2}\int_{0}^{R}e^{-r^2}rdrd\theta\\&=\big(\int_{0}^{\pi/2}d\theta\big)\big(\frac{1}{2}\int_{0}^{R}e^{-r^2}dr^2\big)\\&=\frac{\pi}{4}(1-e^{-R^2})\end{aligned} S1e(x2+y2)dxdy=0π/20Rer2rdrdθ=(0π/2dθ)(210Rer2dr2)=4π(1eR2)

同理   ∬ S 3 e − ( x 2 + y 2 ) d x d y = π 4 ( 1 − e − 2 R 2 )   . 则    π 4 ( 1 − e − R 2 ) ≤ ∬ S 2 e − ( x 2 + y 2 ) d x d y ≤ π 4 ( 1 − e − 2 R 2 )   . 两边取极限   R → ∞ ,则   ( ∫ 0 ∞ e − x 2 d x ) 2 = ∬ R 2 e − ( x 2 + y 2 ) d x d y = π 4 . 所以   ∫ 0 ∞ e − x 2 d x = π 2   . \begin{aligned}\\&\textbf{同理}\,\iint_{S_3}e^{-(x^2+y^2)}dxdy=\frac{\pi}{4}(1-e^{-2R^2})\,.\\&\textbf{则}\,\, \frac{\pi}{4}(1-e^{-R^2})\leq\iint_{S_2}e^{-(x^2+y^2)}dxdy\leq\frac{\pi}{4}(1-e^{-2R^2})\,.\\&\textbf{两边取极限}\,R\to\infin\textbf{,则}\,\Big(\int_{0}^{\infin}e^{-x^2}dx\Big)^2=\iint_{R^2}e^{-(x^2+y^2)}dxdy=\frac{\pi}{4}.\\&\textbf{所以}\,\int_{0}^{\infin}e^{-x^2}dx=\frac{\sqrt{\pi}}{2} \,.\end{aligned} 同理S3e(x2+y2)dxdy=4π(1e2R2).4π(1eR2)S2e(x2+y2)dxdy4π(1e2R2).两边取极限R,则(0ex2dx)2=R2e(x2+y2)dxdy=4π.所以0ex2dx=2π .

3. 几何做法(二)

无穷积分 ∫e^(-x^2)dx 的几种巧妙解法_第2张图片

考虑曲线   z = e − x 2   绕   z   轴旋转一周生成的旋转体的体积,由高数知识 \begin{aligned}\textbf{考虑曲线}\, z=e^{-x^2}\, \textbf{绕}\, z\, \textbf{轴旋转一周生成的旋转体的体积,由高数知识}\end{aligned} 考虑曲线z=ex2z轴旋转一周生成的旋转体的体积,由高数知识
V = ∫ 0 1 π x 2 d z = π ∫ 0 1 ( − ln ⁡ z ) d z = π ( z − z ln ⁡ z )   ∣ 0 1 = π ( 1 − lim ⁡ z → 0 + ( z − z ln ⁡ z ) ) = π \begin{aligned}V&= \int_0^{1}\pi x^2dz\\&=\pi \int_0^{1}(-\ln z)dz\\&=\pi (z-z\ln z)\,\Big|_0^1\\&=\pi (1-\lim_{z\to 0^{+}}(z-z\ln z))\\&=\pi\end{aligned} V=01πx2dz=π01(lnz)dz=π(zzlnz)01=π(1z0+lim(zzlnz))=π

无穷积分 ∫e^(-x^2)dx 的几种巧妙解法_第3张图片

旋转体在几何上的表示如图所示,旋转生成的曲面方程为   z = e − ( x 2 + y 2 ) . 旋转体的体积也可以理解为曲面   z = e − ( x 2 + y 2 ) 与   x O y   之间部分的体积,即 \begin{aligned}&\textbf{旋转体在几何上的表示如图所示,旋转生成的曲面方程为} \,z=e^{-(x^2+y^2)}. \\ &\textbf{旋转体的体积也可以理解为曲面} \,z=e^{-(x^2+y^2)} \textbf{与}\,xOy\,\textbf{之间部分的体积,即}\end{aligned} 旋转体在几何上的表示如图所示,旋转生成的曲面方程为z=e(x2+y2).旋转体的体积也可以理解为曲面z=e(x2+y2)xOy之间部分的体积,即
π = V = ∬ R 2 e − ( x 2 + y 2 ) d x d y = ∫ − ∞ ∞ e − x 2 d x ∫ − ∞ ∞ e − y 2 d y = ( ∫ − ∞ ∞ e − x 2 d x ) 2 \pi=V=\iint_{R^2}e^{-(x^2+y^2)}dxdy=\int_{-\infin}^{\infin}e^{-x^2}dx\int_{-\infin}^{\infin}e^{-y^2}dy=\big(\int_{-\infin}^{\infin}e^{-x^2}dx\big)^2 π=V=R2e(x2+y2)dxdy=ex2dxey2dy=(ex2dx)2 则 ∫ − ∞ ∞ e − x 2 d x = π . \begin{aligned} \textbf{则} \int_{-\infin}^{\infin}e^{-x^2}dx=\sqrt{\pi}.\end{aligned} ex2dx=π .

4. 拉普拉斯变换

令   f ( t ) = ∫ 0 ∞ e − x 2 t d x ,对   f ( t )   作拉普拉斯变换,令 \begin{aligned}&\textbf{令}\,f(t)=\int_0^{\infin}e^{-x^2t}dx\textbf{,对}\,f(t)\,\textbf{作拉普拉斯变换,令}\end{aligned} f(t)=0ex2tdx,对f(t)作拉普拉斯变换,令
   F ( s ) = L [ f ( t ) ] = ∫ 0 ∞ L [ e − x 2 t ] t   d x = ∫ 0 ∞ 1 s + x 2 d x = 1 s ∫ 0 ∞ 1 1 + ( x s ) 2 d ( x s ) ( let    u = x s ) = 1 s arctan ⁡ u   ∣ 0 ∞ = π 2 s − 1 2 \begin{aligned}F(s)=\mathscr{L}[f(t)]&=\int_0^{\infin}\mathscr{L}[e^{-x^2t}]_t\,dx\\&=\int_0^{\infin}\frac{1}{s+x^2}dx\\&=\frac{1}{\sqrt{s}}\int_{0}^{\infin}\frac{1}{1+(\displaystyle \frac{x}{\sqrt{s}})^2}d(\frac{x}{\sqrt{s}}) \quad (\textrm{let}\,\, u=\frac{x}{\sqrt{s}})\\&=\frac{1}{\sqrt{s}}\arctan u\,\Big|_0^{\infin}\\&=\frac{\pi}{2}s^{-\frac{1}{2}}\end{aligned} F(s)=L[f(t)]=0L[ex2t]tdx=0s+x21dx=s 101+(s x)21d(s x)(letu=s x)=s 1arctanu0=2πs21

对   F ( s )   作拉普拉斯反变换 \textbf{对}\,F(s)\,\textbf{作拉普拉斯反变换} F(s)作拉普拉斯反变换

   f ( t ) = L − 1 [ F ( s ) ] = π 2 L − 1 [ 1 s − 1 2 + 1 ] = π 2 1 Γ ( − 1 2 + 1 ) t − 1 2 = π 2 1 Γ ( 1 2 ) t − 1 2 \begin{aligned}f(t)=\mathscr{L}^{-1}[F(s)]&=\frac{\pi}{2}\mathscr{L}^{-1}[\frac{1}{s^{-\frac{1}{2}+1}}]\\&=\frac{\pi}{2}\frac{1}{\Gamma(-\frac{1}{2}+1)}t^{-\frac{1}{2}}\\&=\frac{\pi}{2}\frac{1}{\Gamma(\frac{1}{2})}t^{-\frac{1}{2}}\end{aligned} f(t)=L1[F(s)]=2πL1[s21+11]=2πΓ(21+1)1t21=2πΓ(21)1t21

由余元公式: Γ ( s ) Γ ( 1 − s ) = π sin ⁡ π s . 令   s = 1 2 ,则    Γ ( 1 2 ) = π , 则   f ( t ) = π 2 t   ,   ∫ 0 ∞ e − x 2 d x = f ( 1 ) = π 2   . \begin{aligned}&\textbf{由余元公式:}\Gamma(s)\Gamma(1-s)=\frac{\pi}{\sin \pi s} .\\ &\textbf{令}\,s=\frac{1}{2}\textbf{,则}\,\,\Gamma(\frac{1}{2})=\sqrt{\pi},\\&\textbf{则}\, f(t)=\frac{\sqrt{\pi}}{2\sqrt{t}}\,,\,\int_0^{\infin}e^{-x^2}dx=f(1)=\frac{\sqrt{\pi}}{2}\,.\end{aligned} 由余元公式:Γ(s)Γ(1s)=sinπsπ.s=21,则Γ(21)=π f(t)=2t π ,0ex2dx=f(1)=2π .

5. 变量代换(一)

令   t = x 2 ,则   d t d x = 2 x = 2 t , d x = d t 2 t   . \begin{aligned}\textbf{令}\,t=x^2\textbf{,则}\,\frac{dt}{dx}=2x=2\sqrt{t} ,dx=\frac{dt}{2\sqrt{t}}\,.\end{aligned} t=x2,则dxdt=2x=2t ,dx=2t dt.
∫ 0 ∞ e − x 2 d x = ∫ 0 ∞ e − t d t 2 t = 1 2 ∫ 0 ∞ e − t t 1 2 − 1 d t = 1 2   Γ ( 1 2 ) \int_{0}^{\infin}e^{-x^2}dx=\int_{0}^{\infin}e^{-t}\frac{dt}{2\sqrt{t}}=\frac{1}{2}\int_{0}^{\infin}e^{-t}t^{\frac{1}{2}-1}dt=\frac{1}{2}\,\Gamma(\frac{1}{2}) 0ex2dx=0et2t dt=210ett211dt=21Γ(21)
由上一种方法    Γ ( 1 2 ) = π ,则 ∫ 0 ∞ e − x 2 d x = π 2 . \begin{aligned}&\textbf{由上一种方法}\,\,\Gamma(\frac{1}{2})=\sqrt{\pi}\textbf{,则}\int_{0}^{\infin}e^{-x^2}dx=\frac{\sqrt{\pi}}{2}.\end{aligned} 由上一种方法Γ(21)=π ,则0ex2dx=2π .

6. 变量代换(二)

记   I = ∫ 0 ∞ e − x 2 d x ,令   x = u t ,   u > 0   为参数,则 \begin{aligned}\textbf{记}\,I=\int_0^{\infin}e^{-x^2}dx\textbf{,令}\,x=ut,\,u>0\,\textbf{为参数,则}\end{aligned} I=0ex2dx,令x=ut,u>0为参数,则 I = u ∫ 0 ∞ e − u 2 t 2 d t e − u 2 I = e − u 2 u ∫ 0 ∞ e − u 2 t 2 d t \begin{aligned}I&=u\int_0^{\infin}e^{-u^2t^2}dt\\e^{-u^2}I&=e^{-u^2}u\int_0^{\infin}e^{-u^2t^2}dt\end{aligned} Ieu2I=u0eu2t2dt=eu2u0eu2t2dt 两边对变量   u   积分, I ∫ 0 ∞ e − u 2 d u = ∫ 0 ∞ ( e − u 2 u ∫ 0 ∞ e − u 2 t 2 d t ) d u \begin{aligned}\textbf{两边对变量}\,u\,\textbf{积分,} I\int_0^{\infin}e^{-u^2}du&=\int_0^{\infin}\big(e^{-u^2}u\int_0^{\infin}e^{-u^2t^2}dt\big)du\\ \end{aligned} 两边对变量u积分,I0eu2du=0(eu2u0eu2t2dt)du
右边交换积分次序, \begin{aligned}\textbf{右边交换积分次序,} \end{aligned} 右边交换积分次序,

I 2 = 1 2 ∫ 0 ∞ ( ∫ 0 ∞ e − ( 1 + t 2 ) u 2 d u ) d t = 1 2 ∫ 0 ∞ 1 1 + t 2 d t = 1 2 arctan ⁡ t   ∣ 0 ∞ = π 4 \begin{aligned}I^2&=\frac{1}{2}\int_0^{\infin}\big(\int_0^{\infin}e^{-(1+t^2)u^2}du\big)dt\\&=\frac{1}{2}\int_0^{\infin}\frac{1}{1+t^2}dt \\&=\frac{1}{2}\arctan t\,\Big|_0^{\infin}\\&=\frac{\pi}{4}\end{aligned} I2=210(0e(1+t2)u2du)dt=2101+t21dt=21arctant0=4π

所以   I = π 2   . \begin{aligned}\textbf{所以}\,I=\frac{\sqrt{\pi}}{2}\,.\end{aligned} 所以I=2π .

7. 构造含参变量函数

记   I = ∫ 0 ∞ e − x 2 d x   .   令   f ( x ) = ∫ 0 1 e − x ( 1 + t 2 ) 1 + t 2 d t ,   x ≥ 0 ,则 \begin{aligned}\textbf{记}\,I=\int_0^{\infin}e^{-x^2}dx\,. \,\textbf{令}\,f(x)=\int_0^{1}\frac{e^{-x(1+t^2)}}{1+t^2}dt,\,x\geq 0\textbf{,则}\end{aligned} I=0ex2dx.f(x)=011+t2ex(1+t2)dt,x0,则
    f ( 0 ) = ∫ 0 1 1 1 + t 2 d t = arctan ⁡ t   ∣ 0 1 = π 4 f ( ∞ ) = lim ⁡ x → ∞ ∫ 0 1 e − x ( 1 + t 2 ) 1 + t 2 d t = 0 \begin{aligned} &f(0)=\int_0^{1}\frac{1}{1+t^2}dt=\arctan t\,\Big|_0^1=\frac{\pi}{4} \\ &f(\infin)=\lim_{x\to\infin}\int_0^{1}\frac{e^{-x(1+t^2)}}{1+t^2}dt=0\end{aligned} f(0)=011+t21dt=arctant01=4πf()=xlim011+t2ex(1+t2)dt=0

    f ′ ( x ) = − ∫ 0 1 ∂ ∂ x ( e − x ( 1 + t 2 ) 1 + t 2 ) d t = − ∫ 0 1 e − x ( 1 + t 2 ) d t = − e − x ∫ 0 1 e − x t 2 d t ( l e t    u = x t ,   d t = d u / x   ) = − e − x x ∫ 0 x e − u 2 d u \begin{aligned}f'(x)&=-\int_0^1\frac{\partial }{\partial x}\Big(\frac{e^{-x(1+t^2)}}{1+t^2}\Big)dt\\&=-\int_0^{1}e^{-x(1+t^2)}dt \\ &=-e^{-x}\int_0^{1}e^{-xt^2}dt \quad (let\,\,u=\sqrt{x}t,\,dt=du/\sqrt{x}\,) \\&=-\frac{e^{-x}}{\sqrt{x}}\int_0^{\sqrt{x}}e^{-u^2}du\end{aligned} f(x)=01x(1+t2ex(1+t2))dt=01ex(1+t2)dt=ex01ext2dt(letu=x t,dt=du/x )=x ex0x eu2du

记    g ( x ) = ∫ 0 x e − t 2 d t   , 则   f ′ ( x ) = − e − x x g ( x ) ,   g ′ ( x ) = e − x 2 ,   g ( 0 ) = 0 ,   g ( ∞ ) = I . \begin{aligned}&\textbf{记}\,\,g(x)=\int_0^{x}e^{-t^2}dt\,,\\&\textbf{则} \, f'(x)=-\frac{e^{-x}}{\sqrt{x}}g(\sqrt{x}),\,g'(x)=e^{-x^2},\,g(0)=0,\,g(\infin)=I.\end{aligned} g(x)=0xet2dt,f(x)=x exg(x ),g(x)=ex2,g(0)=0,g()=I.

由牛顿-莱布尼兹公式, \begin{aligned}\textbf{由牛顿-莱布尼兹公式,}\end{aligned} 由牛顿-莱布尼兹公式,

    f ( ∞ ) − f ( 0 ) = ∫ 0 ∞ f ′ ( x ) d x = − ∫ 0 ∞ e − x x g ( x ) d x ( let   u = x ,   d u = d x 2 x ) = − 2 ∫ 0 ∞ e − u 2 g ( u ) d u = − 2 ∫ 0 ∞ g ( u ) g ′ ( u ) d u = − 2 ∫ 0 ∞ g ( u ) d ( g ( u ) ) = − ∫ 0 ∞ d ( g ( u ) 2 ) = g ( 0 ) 2 − g ( ∞ ) 2 \begin{aligned}f(\infin)-f(0)&=\int_0^{\infin}f'(x)dx\\&=-\int_0^{\infin}\frac{e^{-x}}{\sqrt{x}}g(\sqrt{x})dx\quad (\textrm{let} \,u=\sqrt{x},\,du=\frac{dx}{2\sqrt{x}} )\\&=-2\int_0^{\infin}e^{-u^2}g(u)du\\&=-2\int_0^{\infin}g(u)g'(u)du\\&=-2\int_0^{\infin}g(u)d(g(u))\\&=-\int_0^{\infin}d\big(g(u)^2\big)\\&=g(0)^2-g(\infin)^2 \end{aligned} f()f(0)=0f(x)dx=0x exg(x )dx(letu=x ,du=2x dx)=20eu2g(u)du=20g(u)g(u)du=20g(u)d(g(u))=0d(g(u)2)=g(0)2g()2

所以, 0 − π 4 = 0 − I 2 ,   I = π 2   . \begin{aligned}\textbf{所以,} 0-\frac{\pi}{4}&=0-I^2,\,I=\frac{\sqrt{\pi}}{2}\,.\end{aligned} 所以,04π=0I2,I=2π .

8. Wallis 公式

Wallis   公式内容: \begin{aligned}\textbf{Wallis 公式内容:}\end{aligned} Wallis 公式内容:
lim ⁡ n → ∞ ( 2 n − 1 ) ! ! ( 2 n ) ! ! 2 n = 2 π \lim_{n\to\infin}\frac{(2n-1)!!}{(2n)!!}\sqrt{2n}=\sqrt{\frac{2}{\pi}} nlim(2n)!!(2n1)!!2n =π2 推导过程参见: \textbf{推导过程参见:} 推导过程参见:Wallis公式_百度百科

   ∵   lim ⁡ n → ∞ ( 1 + x 2 n ) n x 2 = e ∴   lim ⁡ n → ∞ ( 1 + x 2 n ) − n = e − x 2 \begin{aligned}\because \,\lim_{n\to\infin} \Big(1+\frac{x^2}{n}\Big)^{\frac{n}{x^2}}&=e\\ \therefore \,\lim_{n\to\infin} \Big(1+\frac{x^2}{n}\Big)^{-n}&=e^{-x^2}\end{aligned} nlim(1+nx2)x2nnlim(1+nx2)n=e=ex2

∫ 0 ∞ e − x 2 d x = ∫ 0 ∞ lim ⁡ n → ∞ ( 1 + x 2 n ) − n d x = lim ⁡ n → ∞ ∫ 0 ∞ ( 1 + x 2 n ) − n d x \begin{aligned}\int_0^{\infin}e^{-x^2}dx=&\int_0^{\infin}\lim_{n\to\infin} \Big(1+\frac{x^2}{n}\Big)^{-n}dx =\lim_{n\to\infin} \int_0^{\infin}\Big(1+\frac{x^2}{n}\Big)^{-n}dx \end{aligned} 0ex2dx=0nlim(1+nx2)ndx=nlim0(1+nx2)ndx

( 可以验证积分与极限次序是可交换的 ) . \begin{aligned}\\&(\textbf{可以验证积分与极限次序是可交换的}).\end{aligned} (可以验证积分与极限次序是可交换的).

令   tan ⁡ t = x n ,则   d t d x = 1 n ( 1 + x 2 n ) − 1 ,   d x = n ( 1 + x 2 n ) d t . \begin{aligned}\textbf{令}\,\tan t=\frac{x}{\sqrt{n}} \textbf{,则}\,\frac{dt}{dx}=\frac{1}{\sqrt{n}}(1+\frac{x^2}{n})^{-1},\, dx=\sqrt{n}(1+\frac{x^2}{n})dt.\end{aligned} tant=n x,则dxdt=n 1(1+nx2)1,dx=n (1+nx2)dt.
原式 = lim ⁡ n → ∞ ∫ 0 π 2 n ( 1 + x 2 n ) − n + 1 d t = lim ⁡ n → ∞ ∫ 0 π 2 n ( 1 + ( tan ⁡ t ) 2 ) − ( n − 1 ) d t = lim ⁡ n → ∞ n ∫ 0 π 2 ( cos ⁡ t ) 2 n − 2 d t ( ∫ 0 π 2 ( cos ⁡ t ) 2 n d t = ( 2 n − 1 ) ! ! ( 2 n ) ! ! π 2   ) = lim ⁡ n → ∞ n   ( 2 n − 3 ) ! ! ( 2 n − 2 ) ! ! π 2 = π 2 lim ⁡ n → ∞ ( n − 1 ) + 1   ( 2 ( n − 1 ) − 1 ) ! ! ( 2 ( n − 1 ) ) ! ! ( let    n ′ = n − 1 ) = π 2 lim ⁡ n ′ → ∞ n ′ + 1 2 n ′   ( 2 n ′ − 1 ) ! ! ( 2 n ′ ) ! ! 2 n ′ = π 2 2 lim ⁡ n ′ → ∞ n ′ + 1 n ′ lim ⁡ n ′ → ∞ ( 2 n ′ − 1 ) ! ! ( 2 n ′ ) ! ! 2 n ′ = π 2 2 ⋅ 1 ⋅ 2 π = π 2 \begin{aligned} \textbf{原式}&=\lim_{n\to\infin} \int_0^{\frac{\pi}{2}}\sqrt{n}(1+\frac{x^2}{n})^{-n+1}dt \\&=\lim_{n\to\infin} \int_0^{\frac{\pi}{2}}\sqrt{n}(1+(\tan t)^2)^{-(n-1)}dt\\&=\lim_{n\to\infin} \sqrt{n}\int_0^{\frac{\pi}{2}}(\cos t)^{2n-2}dt \quad \Big( \int_0^{\frac{\pi}{2}}(\cos t)^{2n}dt=\frac{(2n-1)!!}{(2n)!!}\frac{\pi}{2}\,\Big)\\&=\lim_{n\to\infin} \sqrt{n}\,\frac{(2n-3)!!}{(2n-2)!!}\frac{\pi}{2} \\&=\frac{\pi}{2}\lim_{n\to\infin} \sqrt{(n-1)+1}\,\frac{(2(n-1)-1)!!}{(2(n-1))!!} \quad (\textrm{let}\,\,n'=n-1)\\&=\frac{\pi}{2}\lim_{n'\to\infin} \frac{\sqrt{n'+1}}{\sqrt{2n'}}\,\frac{(2n'-1)!!}{(2n')!!}\sqrt{2n'}\\&=\frac{\pi}{2\sqrt{2}}\lim_{n'\to\infin} \frac{\sqrt{n'+1}}{\sqrt{n'}}\lim_{n'\to\infin} \frac{(2n'-1)!!}{(2n')!!}\sqrt{2n'}\\&=\frac{\pi}{2\sqrt{2}}\cdot1\cdot\sqrt{\frac{2}{\pi}}\\&=\frac{\sqrt{\pi}}{2}\end{aligned} 原式=nlim02πn (1+nx2)n+1dt=nlim02πn (1+(tant)2)(n1)dt=nlimn 02π(cost)2n2dt(02π(cost)2ndt=(2n)!!(2n1)!!2π)=nlimn (2n2)!!(2n3)!!2π=2πnlim(n1)+1 (2(n1))!!(2(n1)1)!!(letn=n1)=2πnlim2n n+1 (2n)!!(2n1)!!2n =22 πnlimn n+1 nlim(2n)!!(2n1)!!2n =22 π1π2 =2π

所以   ∫ 0 ∞ e − x 2 d x = π 2 . \begin{aligned}\textbf{所以}\,\int_0^{\infin}e^{-x^2}dx=\frac{\sqrt{\pi}}{2}\end{aligned}. 所以0ex2dx=2π .



若读者还有其他巧妙解法,请不吝赐教! \small \textbf{若读者还有其他巧妙解法,请不吝赐教!} 若读者还有其他巧妙解法,请不吝赐教!

文末彩蛋:大家好,这是我的孪生兄弟: \small \textbf{文末彩蛋:大家好,这是我的孪生兄弟:} 文末彩蛋:大家好,这是我的孪生兄弟: 无穷积分   ∫ sin ⁡ x x d x   的几种巧妙解法! \small \textbf{无穷积分}\,\displaystyle \int \frac{\sin x}{x}dx\, \textbf{的几种巧妙解法!} 无穷积分xsinxdx的几种巧妙解法!


Plus: 如有错误、可以改进的地方、或任何想说的,请在评论区留言!

你可能感兴趣的:(数学园地)