kafka生产者消息发送的流程与参数配置

kafka生产者发送消息的流程

1、消息首先会被封装成ProducerRecord对象,ProducerRecord的构造方法有多种。

可以指定要发送的分区

spring提供的kafkaTemplate也可以指定分区发送,比如这里指定了发送到分区为1

public String sendPartition() {
	for (int i = 0; i < 10; i++) {
	    kafkaTemplate.send("test_topic", 1,"test_topic_key", String.valueOf(i));
	}
	return "ok";
}

消费者

@KafkaListener(topics = {"test_topic"})
public void listen(ConsumerRecord<?, ?> record) {
    logger.info("get msg key: {}, value: {}, partition: {}", record.key(), record.value().toString(), record.partition());
}

打印收到的消息,全部是从为1的分区中获取到的消息
kafka生产者消息发送的流程与参数配置_第1张图片
如果指定的分区不存在,比如我指定消息发送到分区10,则会报错

2020-05-22 15:10:58.300 ERROR 16100 --- [nio-8080-exec-2] o.s.k.support.LoggingProducerListener    : Exception thrown when sending a message with key='test_topic_key' and payload='0' to topic test_topic and partition 10:

org.apache.kafka.common.errors.TimeoutException: Topic test_topic not present in metadata after 60000 ms.

默认等待元数据响应是60s,可以通过参数修改,比如配置成1秒。

props.put(ProducerConfig.MAX_BLOCK_MS_CONFIG, 1000);

这时候我们再看报错信息

2020-05-22 15:31:11.855 ERROR 8264 --- [nio-8080-exec-4] o.s.k.support.LoggingProducerListener    : Exception thrown when sending a message with key='test_topic_key' and payload='0' to topic test_topic and partition 10:

org.apache.kafka.common.errors.TimeoutException: Topic test_topic not present in metadata after 1000 ms.

2、确保元数据可用

上面的分区不正确,就是在这个地方校验并抛出异常的

// first make sure the metadata for the topic is available
ClusterAndWaitTime clusterAndWaitTime;
try {
    clusterAndWaitTime = waitOnMetadata(record.topic(), record.partition(), maxBlockTimeMs);
} catch (KafkaException e) {
    if (metadata.isClosed())
        throw new KafkaException("Producer closed while send in progress", e);
    throw e;
}

3、序列化消息

byte[] serializedKey;
try {
    serializedKey = keySerializer.serialize(record.topic(), record.headers(), record.key());
} catch (ClassCastException cce) {
    throw new SerializationException("Can't convert key of class " + record.key().getClass().getName() +
            " to class " + producerConfig.getClass(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG).getName() +
            " specified in key.serializer", cce);
}
byte[] serializedValue;
try {
    serializedValue = valueSerializer.serialize(record.topic(), record.headers(), record.value());
} catch (ClassCastException cce) {
    throw new SerializationException("Can't convert value of class " + record.value().getClass().getName() +
            " to class " + producerConfig.getClass(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG).getName() +
            " specified in value.serializer", cce);
}

4、计算消息应该发送到哪个分区?

int partition = partition(record, serializedKey, serializedValue, cluster);
private int partition(ProducerRecord<K, V> record, byte[] serializedKey, byte[] serializedValue, Cluster cluster) {
        Integer partition = record.partition();
        return partition != null ?
                partition :
                partitioner.partition(
                        record.topic(), record.key(), serializedKey, record.value(), serializedValue, cluster);
    }

如果没有指定分区器,则使用默认的分区器DefaultPartitioner,大概流程:
1、先根据topic获取分区数。
2、如果发送消息时指定了key,则根据key的hash值与分区数取模,获得分区。
3、如果没有指定key,则通过维护一个自增的int值再与分区数取模,获取分区,这就类似轮询的方式了。

public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
        List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
        int numPartitions = partitions.size();
        if (keyBytes == null) {
            int nextValue = nextValue(topic);
            List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic);
            if (availablePartitions.size() > 0) {
                int part = Utils.toPositive(nextValue) % availablePartitions.size();
                return availablePartitions.get(part).partition();
            } else {
                // no partitions are available, give a non-available partition
                return Utils.toPositive(nextValue) % numPartitions;
            }
        } else {
            // hash the keyBytes to choose a partition
            return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions;
        }
    }


private int nextValue(String topic) {
    AtomicInteger counter = topicCounterMap.get(topic);
    if (null == counter) {
        counter = new AtomicInteger(ThreadLocalRandom.current().nextInt());
        AtomicInteger currentCounter = topicCounterMap.putIfAbsent(topic, counter);
        if (currentCounter != null) {
            counter = currentCounter;
        }
    }
    return counter.getAndIncrement();
}

5、把一条消息放入一个批次中,按批次发送
默认条件一个批次大小是16kb,通过batch.size参数设置,当批次中的消息大小达到16kb时,才会发送到broker中,否则等待,那么等待的时间可以由linger.ms这个参数控制,如果超过等待时间后还未达到16kb,那么还是会发送到broker中,这个参数默认值是0,也就是不等待。

batch.size参数设置过小,可能会降低kafka的吞吐量,设置的过大又可能会占用过多的内存和延迟消息的发送时间。
batch.size参数一定要配合linger.ms使用,并且linger.ms默认值是0,所以默认情况下如果不设置linger.ms值等于还是一条一条发送消息的。

@RequestMapping(value = "/sendlinger")
public String sendlinger() throws ExecutionException, InterruptedException {
    ListenableFuture future = kafkaTemplate.send("test_topic", "test_topic_key", "test");
    long s = System.currentTimeMillis();
    future.get();
    long e = System.currentTimeMillis();
    System.out.println("wait time: " + (e - s));
    return "ok";
}

linger.ms设置为0,不等待
props.put(ProducerConfig.LINGER_MS_CONFIG, 0);

wait time: 1
2020-05-22 18:54:15.484  INFO 4860 --- [ntainer#0-1-C-1] com.wyl.service.MyListener               : get msg key: test_topic_key, value: test, partition: 2

linger.ms设置为1000
props.put(ProducerConfig.LINGER_MS_CONFIG, 1000);

wait time: 1001
2020-05-22 18:55:18.591  INFO 20140 --- [ntainer#0-1-C-1] com.wyl.service.MyListener               : get msg key: test_topic_key, value: test, partition: 2

一批次的消息会被放入Deque的队列中,然后唤醒sender线程,由sender线程负责把消息发送给broker。

//追加消息
RecordAccumulator.RecordAppendResult result = accumulator.append(tp, timestamp, serializedKey,
                    serializedValue, headers, interceptCallback, remainingWaitMs);
if (result.batchIsFull || result.newBatchCreated) {
    log.trace("Waking up the sender since topic {} partition {} is either full or getting a new batch", record.topic(), partition);
    //唤醒sender线程
    this.sender.wakeup();
}

把消息按照批次发送,虽然提高了吞吐量,但是却带来了频繁申请内存空间再释放的过程,也就是说会造成频繁的GC。

针对上述问题,于是kafka就设计出了缓冲池的概念,kafka先将一片内存区域固定下来专门用于存放batch,每次从缓冲池申请batch,使用完后再还回缓冲池,这样就避免了每次对于batch的申请与回收,解决了JVM 频繁GC的问题

当缓冲池满了以后并且配置了阻塞模式(max.block.ms参数),也就是说消息写入的速度大于向broker发送的速度,那么就阻塞写入,直到缓冲池中有空余内存时为止。

分配过程

/**
     * Allocate a buffer of the given size. This method blocks if there is not enough memory and the buffer pool
     * is configured with blocking mode.
     *
     * @param size The buffer size to allocate in bytes
     * @param maxTimeToBlockMs The maximum time in milliseconds to block for buffer memory to be available
     * @return The buffer
     * @throws InterruptedException If the thread is interrupted while blocked
     * @throws IllegalArgumentException if size is larger than the total memory controlled by the pool (and hence we would block
     *         forever)
     */
    public ByteBuffer allocate(int size, long maxTimeToBlockMs) throws InterruptedException {
        if (size > this.totalMemory)
            throw new IllegalArgumentException("Attempt to allocate " + size
                                               + " bytes, but there is a hard limit of "
                                               + this.totalMemory
                                               + " on memory allocations.");

        ByteBuffer buffer = null;
        this.lock.lock();
        try {
            // check if we have a free buffer of the right size pooled
            if (size == poolableSize && !this.free.isEmpty())
                return this.free.pollFirst();

            // now check if the request is immediately satisfiable with the
            // memory on hand or if we need to block
            int freeListSize = freeSize() * this.poolableSize;
            if (this.nonPooledAvailableMemory + freeListSize >= size) {
                // we have enough unallocated or pooled memory to immediately
                // satisfy the request, but need to allocate the buffer
                freeUp(size);
                this.nonPooledAvailableMemory -= size;
            } else {
                // we are out of memory and will have to block
                int accumulated = 0;
                Condition moreMemory = this.lock.newCondition();
                try {
                    long remainingTimeToBlockNs = TimeUnit.MILLISECONDS.toNanos(maxTimeToBlockMs);
                    this.waiters.addLast(moreMemory);
                    // loop over and over until we have a buffer or have reserved
                    // enough memory to allocate one
                    while (accumulated < size) {
                        long startWaitNs = time.nanoseconds();
                        long timeNs;
                        boolean waitingTimeElapsed;
                        try {
                            waitingTimeElapsed = !moreMemory.await(remainingTimeToBlockNs, TimeUnit.NANOSECONDS);
                        } finally {
                            long endWaitNs = time.nanoseconds();
                            timeNs = Math.max(0L, endWaitNs - startWaitNs);
                            recordWaitTime(timeNs);
                        }

                        if (waitingTimeElapsed) {
                            throw new TimeoutException("Failed to allocate memory within the configured max blocking time " + maxTimeToBlockMs + " ms.");
                        }

                        remainingTimeToBlockNs -= timeNs;

                        // check if we can satisfy this request from the free list,
                        // otherwise allocate memory
                        if (accumulated == 0 && size == this.poolableSize && !this.free.isEmpty()) {
                            // just grab a buffer from the free list
                            buffer = this.free.pollFirst();
                            accumulated = size;
                        } else {
                            // we'll need to allocate memory, but we may only get
                            // part of what we need on this iteration
                            freeUp(size - accumulated);
                            int got = (int) Math.min(size - accumulated, this.nonPooledAvailableMemory);
                            this.nonPooledAvailableMemory -= got;
                            accumulated += got;
                        }
                    }
                    // Don't reclaim memory on throwable since nothing was thrown
                    accumulated = 0;
                } finally {
                    // When this loop was not able to successfully terminate don't loose available memory
                    this.nonPooledAvailableMemory += accumulated;
                    this.waiters.remove(moreMemory);
                }
            }
        } finally {
            // signal any additional waiters if there is more memory left
            // over for them
            try {
                if (!(this.nonPooledAvailableMemory == 0 && this.free.isEmpty()) && !this.waiters.isEmpty())
                    this.waiters.peekFirst().signal();
            } finally {
                // Another finally... otherwise find bugs complains
                lock.unlock();
            }
        }

        if (buffer == null)
            return safeAllocateByteBuffer(size);
        else
            return buffer;
    }

流程图
kafka生产者消息发送的流程与参数配置_第2张图片

你可能感兴趣的:(Kafka)