简谐运动公式的推导

大家都知道简谐运动的公式是Acos(wt+Φ),但是为什么是这个呢?我在这里进行一些简单的说明。

简谐运动公式的推导_第1张图片

我们首先从这个简单的弹簧振子开始说起,我们先引入一个概念:回复力(也有的书上叫做恢复力)

百度百科:回复力是指指振动物体所受的总是向平衡位置的合外力。公式F=-kx。

关于回复力的公式其实我们也很好理解:比如说我这个物体本来是在平衡位置,现在向右边移动,就会受到一个向左边的力,根据胡克定律F=-k·Δx,这里呢弹簧的平衡位置是和我们的参考原点重合的,所以我们就使用x来代替Δx。

根据牛顿公式以及位移和加速度的关系,我们可以得到一个微分方程简谐运动公式的推导_第2张图片
然后我想要说明的东西就来了

  • 首先我们部分物理书上面是说k/m=w2,但是这是为什么呢?其实教科书在这里省略了一个步骤,我们把Asin(wt+Φ)带进去之后,如果希望等式恒成立,那么k/m=w2 .
  • 然后是第二个问题:我用x=cos(wx)带进去等式也是成立的呀,但是为什么不直接使用cos(wx)呢?
  1. 我们选取几个特定的状态来说明为什么还要加上A和Φ,首先我们使t=0,也就是在初始的时刻,我们会得到x=0,但是质点如果不在平衡位置怎么办呢?很显然,这种情况就没有办法得到解释,所以我们使用Φ来表示质点的初始位置,这也很好理解为什么Φ是叫初相位。
  2. 那好为什么要加上A呢,我们使cos(wt+Φ)=1,也就是质点偏离平衡位置的最远距离,我们会发现x=1,发现问题了吧哈哈,谁告诉你质点偏离平衡位置最远的距离是1?所以我们要配上一个A,这也就是为什么A被称之为振幅的。
  3. 当我们的质点初始位置恰好在原点(平衡位置),振幅是1,这时候Acos(wt+Φ)=cos(wt),也就是后面的公式是简谐振动的一个特例,如果再特殊一点w=1,就更简单了
  4. 不知道小伙伴们有没有想过这个问题:为什么大部分教科书会选择余弦函数来描述简谐运动而不是用正弦,关于这个问题可以参考物理书上面对旋转矢量的讲解,我们会发现简谐运动变成了圆周运动上面的一个点在x轴上的投影,等等,投影?哈,你是不是想起了向量的投影公式|a||b|cosθ,现在知道为什么使用余弦函数来描述了吗
  5. 当我们使用旋转矢量来描述简谐运动的时候,我相信你也会明白w的物理意义了,即旋转矢量旋转的角速度。

你可能感兴趣的:(简谐运动公式的推导)