Time Limit: 6000/3000 MS (Java/Others)
Memory Limit: 32768/32768 K (Java/Others)
Consider equations having the following form:
a*x1^2+b*x2^2+c*x3^2+d*x4^2=0
a, b, c, d are integers from the interval [-50,50] and any of them cannot be 0.
It is consider a solution a system ( x1,x2,x3,x4 ) that verifies the equation, xi is an integer from [-100,100] and xi != 0, any i ∈{1,2,3,4}.
Determine how many solutions satisfy the given equation.
The input consists of several test cases. Each test case consists of a single line containing the 4 coefficients a, b, c, d, separated by one or more blanks.
End of file.
For each test case, output a single line containing the number of the solutions.
1 2 3 -4
1 1 1 1
39088
0
题意:给出方程ax12+bx22+cx32+dx42=0的系数abcd,求共有多少组正整数解。
方法:
(1)将方程式写成a * x1 * x1 + b * x2 * x2 = - (c * x3 * x3 + d * x4 * x4)的形式;
(2)使用hash,但是不知道为什么,数组命名为hash就会编译错误,所以命名为vis;
(3)50 * 100 *100 + 50 *100 *100=1000000,所以hash数组至少要2000000;
(4)a * x1 * x1 + b * x2 * x2最小为-1000000,所以数组要加上1000000的偏移量,以保证数组下标最小为0,而不是负数;
(5)因为正负号不同不影响平方的效果,所以只枚举正数,最后乘以2的4次方(16),表示正负不同的组合。
#include
#include
#include
using namespace std;
#define maxn 2000008 //100*100*50*4=2000000
int vis[maxn];
int main()
{
int a,b,c,d;
while(cin>>a>>b>>c>>d)
{
if(a>0&&b>0&&c>0&&d>0 || a<0&&b<0&&c<0&&d<0)
{
cout<<0<else
{
memset(vis,0,sizeof(vis));
//偏移量为1000000,保证数组下标不为负数
for(int x1=1;x1<=100;x1++)
{
for(int x2=1;x2<=100;x2++)
{
//将数组下标为a*x1*x1+b*x2*x2的值置为1
vis[1000000+a*x1*x1+b*x2*x2]++;
}
}
int count=0;
//偏移量为1000000
for(int x3=1;x3<=100;x3++)
{
for(int x4=1;x4<=100;x4++)
{
/*下标为c*x3*x3+d*x4*x4的值为1则是解,为0则不是解
值为1的个数即为解的总个数,由于0不影响结果
所以可直接用count+=vis[1000000-(c*x3*x3+d*x4*x4)]
*/
count+=vis[1000000-(c*x3*x3+d*x4*x4)];
}
}
cout<16<return 0;
}